CardSimEngine/cardsim/sliceutil.go

166 lines
4.7 KiB
Go

package cardsim
import (
"fmt"
"math/rand"
)
// InsertInto inserts one or more items into a slice at an arbitrary index.
// Items already in the slice past the target position move to later positons.
//
// Like `append`, this may move the underlying array and it produces a new
// slice header (under the hood, it uses `append`). It returns the new slice
// (the original is in an undefined state and should no longer be used).
//
// If loc is negative or more than one past the end of T, Insert panics.
func InsertInto[T any](slice []T, loc int, elements ...T) []T {
if loc < 0 || loc > len(slice) {
panic(fmt.Sprintf("can't Insert at location %d in %d-element slice", loc, len(slice)))
}
// is this a no-op?
if len(elements) == 0 {
return slice
}
// is this just an append?
if loc == len(slice) {
return append(slice, elements...)
}
offset := len(elements)
oldLen := len(slice)
newSize := oldLen + offset
if newSize <= cap(slice) {
// We can reslice in place.
slice = slice[:newSize]
// Scoot trailing to their new positions.
copy(slice[loc+offset:], slice[loc:oldLen])
// Insert the new elements.
copy(slice[loc:], elements)
return slice
}
// Reallocate. Do the normal thing of doubling the size as a minimum
// when increasing space for a dynamic array; this amortizes the
// cost of repeatedly reallocating and moving the slice.
newCap := cap(slice) * 2
if newCap < newSize {
newCap = newSize
}
newSlice := make([]T, newSize, newCap)
if loc > 0 {
copy(newSlice, slice[0:loc])
}
copy(newSlice[loc:], elements)
copy(newSlice[loc+offset:], slice[loc:])
return newSlice
}
// DeleteFrom deletes an item from a slice at an arbitrary index. Items after it
// scoot up to close the gap. This returns the modified slice (like Append).
//
// If the provided location is not a valid location in the slice, this panics.
func DeleteFrom[T any](slice []T, loc int) []T {
return DeleteNFrom(slice, loc, 1)
}
// DeleteNFrom deletes N items from a slice at an arbitrary index. Items after
// it scoot up to close the gap. This returns the modified slice (like Append).
//
// If the range of items that would be deleted is not entirely valid within the
// slice, this panics.
func DeleteNFrom[T any](slice []T, loc, n int) []T {
if loc < 0 || loc+n > len(slice) {
panic(fmt.Sprintf("can't delete %d elements from a %d-element slice at location %d", n, len(slice), loc))
}
// Easy cases.
if n == 0 {
return slice
}
if loc == 0 {
return slice[n:]
}
if loc+n == len(slice) {
return slice[0:loc]
}
// Is it shorter to move up or move down?
if len(slice)-loc-n > loc {
// Move forward -- the end is big.
copy(slice[n:], slice[:loc])
return slice[n:]
}
// Move backward -- the beginnng is big or they're the same size
// (and moving backwards preserves more usable append capacity later).
copy(slice[loc:], slice[loc+n:])
return slice[:len(slice)-n]
}
// ShuffleAll shuffles everything in slice, using the provided rand.Rand.
// If no rand.Rand is provided, this uses the default source.
func ShuffleAll[T any](slice []T, r *rand.Rand) {
shuffle := rand.Shuffle
if r != nil {
shuffle = r.Shuffle
}
shuffle(len(slice), func(i, j int) {
slice[i], slice[j] = slice[j], slice[i]
})
}
// ShufflePart shuffles the `n` elements of `slice` starting at `loc`
// in-place, using the provided rand.Rand. If the range of items to
// shuffle is not entirely within `slice`, this panics.
//
// If no rand.Rand is provided, this uses the default source.
func ShufflePart[T any](slice []T, r *rand.Rand, loc, n int) {
if loc < 0 || loc+n > len(slice) {
panic(fmt.Sprintf("can't shuffle %d elements from a %d-element slice at location %d", n, len(slice), loc))
}
if n < 1 {
return
}
ShuffleAll(slice[loc:loc+n], r)
}
// Strip iterates T, removing any element for which removeWhen returns true
// (when provided the index of the element and the element itself as arguments).
// It returns the stripped slice.
func Strip[T any](slice []T, removeWhen func(idx int, t T) bool) []T {
if len(slice) == 0 {
return nil
}
to := 0
for from, e := range slice {
if !removeWhen(from, e) {
if to != from {
slice[to] = slice[from]
}
to++
}
}
return slice[:to]
}
// EnsureCapacity checks if `cap(slice)` is at least req. If so, it returns
// slice unchanged. Otherwise, it copies `slice` to a new slice that is at least
// capacity `req` (but may be larger) and returns the copy.
//
// It is reasonably efficient to use EnsureCapacity consecutively without
// regard for the final overall capacity that a specific slice will need to be.
func EnsureCapacity[T any](slice []T, req int) []T {
if cap(slice) >= req {
return slice
}
if req < 2*cap(slice) {
req = 2 * cap(slice)
}
ret := make([]T, len(slice), req)
copy(ret, slice)
return ret
}