Add a vendored copy of SDL

This commit is contained in:
2024-02-24 19:00:12 -08:00
parent 2cb2743283
commit 5c11bfd9c8
1613 changed files with 675493 additions and 0 deletions

View File

@ -0,0 +1,102 @@
<?xml version="1.0" encoding="UTF-8"?>
<protocol name="fractional_scale_v1">
<copyright>
Copyright © 2022 Kenny Levinsen
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice (including the next
paragraph) shall be included in all copies or substantial portions of the
Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
</copyright>
<description summary="Protocol for requesting fractional surface scales">
This protocol allows a compositor to suggest for surfaces to render at
fractional scales.
A client can submit scaled content by utilizing wp_viewport. This is done by
creating a wp_viewport object for the surface and setting the destination
rectangle to the surface size before the scale factor is applied.
The buffer size is calculated by multiplying the surface size by the
intended scale.
The wl_surface buffer scale should remain set to 1.
If a surface has a surface-local size of 100 px by 50 px and wishes to
submit buffers with a scale of 1.5, then a buffer of 150px by 75 px should
be used and the wp_viewport destination rectangle should be 100 px by 50 px.
For toplevel surfaces, the size is rounded halfway away from zero. The
rounding algorithm for subsurface position and size is not defined.
</description>
<interface name="wp_fractional_scale_manager_v1" version="1">
<description summary="fractional surface scale information">
A global interface for requesting surfaces to use fractional scales.
</description>
<request name="destroy" type="destructor">
<description summary="unbind the fractional surface scale interface">
Informs the server that the client will not be using this protocol
object anymore. This does not affect any other objects,
wp_fractional_scale_v1 objects included.
</description>
</request>
<enum name="error">
<entry name="fractional_scale_exists" value="0"
summary="the surface already has a fractional_scale object associated"/>
</enum>
<request name="get_fractional_scale">
<description summary="extend surface interface for scale information">
Create an add-on object for the the wl_surface to let the compositor
request fractional scales. If the given wl_surface already has a
wp_fractional_scale_v1 object associated, the fractional_scale_exists
protocol error is raised.
</description>
<arg name="id" type="new_id" interface="wp_fractional_scale_v1"
summary="the new surface scale info interface id"/>
<arg name="surface" type="object" interface="wl_surface"
summary="the surface"/>
</request>
</interface>
<interface name="wp_fractional_scale_v1" version="1">
<description summary="fractional scale interface to a wl_surface">
An additional interface to a wl_surface object which allows the compositor
to inform the client of the preferred scale.
</description>
<request name="destroy" type="destructor">
<description summary="remove surface scale information for surface">
Destroy the fractional scale object. When this object is destroyed,
preferred_scale events will no longer be sent.
</description>
</request>
<event name="preferred_scale">
<description summary="notify of new preferred scale">
Notification of a new preferred scale for this surface that the
compositor suggests that the client should use.
The sent scale is the numerator of a fraction with a denominator of 120.
</description>
<arg name="scale" type="uint" summary="the new preferred scale"/>
</event>
</interface>
</protocol>

View File

@ -0,0 +1,83 @@
<?xml version="1.0" encoding="UTF-8"?>
<protocol name="idle_inhibit_unstable_v1">
<copyright>
Copyright © 2015 Samsung Electronics Co., Ltd
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice (including the next
paragraph) shall be included in all copies or substantial portions of the
Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
</copyright>
<interface name="zwp_idle_inhibit_manager_v1" version="1">
<description summary="control behavior when display idles">
This interface permits inhibiting the idle behavior such as screen
blanking, locking, and screensaving. The client binds the idle manager
globally, then creates idle-inhibitor objects for each surface.
Warning! The protocol described in this file is experimental and
backward incompatible changes may be made. Backward compatible changes
may be added together with the corresponding interface version bump.
Backward incompatible changes are done by bumping the version number in
the protocol and interface names and resetting the interface version.
Once the protocol is to be declared stable, the 'z' prefix and the
version number in the protocol and interface names are removed and the
interface version number is reset.
</description>
<request name="destroy" type="destructor">
<description summary="destroy the idle inhibitor object">
Destroy the inhibit manager.
</description>
</request>
<request name="create_inhibitor">
<description summary="create a new inhibitor object">
Create a new inhibitor object associated with the given surface.
</description>
<arg name="id" type="new_id" interface="zwp_idle_inhibitor_v1"/>
<arg name="surface" type="object" interface="wl_surface"
summary="the surface that inhibits the idle behavior"/>
</request>
</interface>
<interface name="zwp_idle_inhibitor_v1" version="1">
<description summary="context object for inhibiting idle behavior">
An idle inhibitor prevents the output that the associated surface is
visible on from being set to a state where it is not visually usable due
to lack of user interaction (e.g. blanked, dimmed, locked, set to power
save, etc.) Any screensaver processes are also blocked from displaying.
If the surface is destroyed, unmapped, becomes occluded, loses
visibility, or otherwise becomes not visually relevant for the user, the
idle inhibitor will not be honored by the compositor; if the surface
subsequently regains visibility the inhibitor takes effect once again.
Likewise, the inhibitor isn't honored if the system was already idled at
the time the inhibitor was established, although if the system later
de-idles and re-idles the inhibitor will take effect.
</description>
<request name="destroy" type="destructor">
<description summary="destroy the idle inhibitor object">
Remove the inhibitor effect from the associated wl_surface.
</description>
</request>
</interface>
</protocol>

View File

@ -0,0 +1,143 @@
<?xml version="1.0" encoding="UTF-8"?>
<protocol name="keyboard_shortcuts_inhibit_unstable_v1">
<copyright>
Copyright © 2017 Red Hat Inc.
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice (including the next
paragraph) shall be included in all copies or substantial portions of the
Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
</copyright>
<description summary="Protocol for inhibiting the compositor keyboard shortcuts">
This protocol specifies a way for a client to request the compositor
to ignore its own keyboard shortcuts for a given seat, so that all
key events from that seat get forwarded to a surface.
Warning! The protocol described in this file is experimental and
backward incompatible changes may be made. Backward compatible
changes may be added together with the corresponding interface
version bump.
Backward incompatible changes are done by bumping the version
number in the protocol and interface names and resetting the
interface version. Once the protocol is to be declared stable,
the 'z' prefix and the version number in the protocol and
interface names are removed and the interface version number is
reset.
</description>
<interface name="zwp_keyboard_shortcuts_inhibit_manager_v1" version="1">
<description summary="context object for keyboard grab_manager">
A global interface used for inhibiting the compositor keyboard shortcuts.
</description>
<request name="destroy" type="destructor">
<description summary="destroy the keyboard shortcuts inhibitor object">
Destroy the keyboard shortcuts inhibitor manager.
</description>
</request>
<request name="inhibit_shortcuts">
<description summary="create a new keyboard shortcuts inhibitor object">
Create a new keyboard shortcuts inhibitor object associated with
the given surface for the given seat.
If shortcuts are already inhibited for the specified seat and surface,
a protocol error "already_inhibited" is raised by the compositor.
</description>
<arg name="id" type="new_id" interface="zwp_keyboard_shortcuts_inhibitor_v1"/>
<arg name="surface" type="object" interface="wl_surface"
summary="the surface that inhibits the keyboard shortcuts behavior"/>
<arg name="seat" type="object" interface="wl_seat"
summary="the wl_seat for which keyboard shortcuts should be disabled"/>
</request>
<enum name="error">
<entry name="already_inhibited"
value="0"
summary="the shortcuts are already inhibited for this surface"/>
</enum>
</interface>
<interface name="zwp_keyboard_shortcuts_inhibitor_v1" version="1">
<description summary="context object for keyboard shortcuts inhibitor">
A keyboard shortcuts inhibitor instructs the compositor to ignore
its own keyboard shortcuts when the associated surface has keyboard
focus. As a result, when the surface has keyboard focus on the given
seat, it will receive all key events originating from the specified
seat, even those which would normally be caught by the compositor for
its own shortcuts.
The Wayland compositor is however under no obligation to disable
all of its shortcuts, and may keep some special key combo for its own
use, including but not limited to one allowing the user to forcibly
restore normal keyboard events routing in the case of an unwilling
client. The compositor may also use the same key combo to reactivate
an existing shortcut inhibitor that was previously deactivated on
user request.
When the compositor restores its own keyboard shortcuts, an
"inactive" event is emitted to notify the client that the keyboard
shortcuts inhibitor is not effectively active for the surface and
seat any more, and the client should not expect to receive all
keyboard events.
When the keyboard shortcuts inhibitor is inactive, the client has
no way to forcibly reactivate the keyboard shortcuts inhibitor.
The user can chose to re-enable a previously deactivated keyboard
shortcuts inhibitor using any mechanism the compositor may offer,
in which case the compositor will send an "active" event to notify
the client.
If the surface is destroyed, unmapped, or loses the seat's keyboard
focus, the keyboard shortcuts inhibitor becomes irrelevant and the
compositor will restore its own keyboard shortcuts but no "inactive"
event is emitted in this case.
</description>
<request name="destroy" type="destructor">
<description summary="destroy the keyboard shortcuts inhibitor object">
Remove the keyboard shortcuts inhibitor from the associated wl_surface.
</description>
</request>
<event name="active">
<description summary="shortcuts are inhibited">
This event indicates that the shortcut inhibitor is active.
The compositor sends this event every time compositor shortcuts
are inhibited on behalf of the surface. When active, the client
may receive input events normally reserved by the compositor
(see zwp_keyboard_shortcuts_inhibitor_v1).
This occurs typically when the initial request "inhibit_shortcuts"
first becomes active or when the user instructs the compositor to
re-enable and existing shortcuts inhibitor using any mechanism
offered by the compositor.
</description>
</event>
<event name="inactive">
<description summary="shortcuts are restored">
This event indicates that the shortcuts inhibitor is inactive,
normal shortcuts processing is restored by the compositor.
</description>
</event>
</interface>
</protocol>

View File

@ -0,0 +1,339 @@
<?xml version="1.0" encoding="UTF-8"?>
<protocol name="pointer_constraints_unstable_v1">
<copyright>
Copyright © 2014 Jonas Ådahl
Copyright © 2015 Red Hat Inc.
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice (including the next
paragraph) shall be included in all copies or substantial portions of the
Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
</copyright>
<description summary="protocol for constraining pointer motions">
This protocol specifies a set of interfaces used for adding constraints to
the motion of a pointer. Possible constraints include confining pointer
motions to a given region, or locking it to its current position.
In order to constrain the pointer, a client must first bind the global
interface "wp_pointer_constraints" which, if a compositor supports pointer
constraints, is exposed by the registry. Using the bound global object, the
client uses the request that corresponds to the type of constraint it wants
to make. See wp_pointer_constraints for more details.
Warning! The protocol described in this file is experimental and backward
incompatible changes may be made. Backward compatible changes may be added
together with the corresponding interface version bump. Backward
incompatible changes are done by bumping the version number in the protocol
and interface names and resetting the interface version. Once the protocol
is to be declared stable, the 'z' prefix and the version number in the
protocol and interface names are removed and the interface version number is
reset.
</description>
<interface name="zwp_pointer_constraints_v1" version="1">
<description summary="constrain the movement of a pointer">
The global interface exposing pointer constraining functionality. It
exposes two requests: lock_pointer for locking the pointer to its
position, and confine_pointer for locking the pointer to a region.
The lock_pointer and confine_pointer requests create the objects
wp_locked_pointer and wp_confined_pointer respectively, and the client can
use these objects to interact with the lock.
For any surface, only one lock or confinement may be active across all
wl_pointer objects of the same seat. If a lock or confinement is requested
when another lock or confinement is active or requested on the same surface
and with any of the wl_pointer objects of the same seat, an
'already_constrained' error will be raised.
</description>
<enum name="error">
<description summary="wp_pointer_constraints error values">
These errors can be emitted in response to wp_pointer_constraints
requests.
</description>
<entry name="already_constrained" value="1"
summary="pointer constraint already requested on that surface"/>
</enum>
<enum name="lifetime">
<description summary="constraint lifetime">
These values represent different lifetime semantics. They are passed
as arguments to the factory requests to specify how the constraint
lifetimes should be managed.
</description>
<entry name="oneshot" value="1">
<description summary="the pointer constraint is defunct once deactivated">
A oneshot pointer constraint will never reactivate once it has been
deactivated. See the corresponding deactivation event
(wp_locked_pointer.unlocked and wp_confined_pointer.unconfined) for
details.
</description>
</entry>
<entry name="persistent" value="2">
<description summary="the pointer constraint may reactivate">
A persistent pointer constraint may again reactivate once it has
been deactivated. See the corresponding deactivation event
(wp_locked_pointer.unlocked and wp_confined_pointer.unconfined) for
details.
</description>
</entry>
</enum>
<request name="destroy" type="destructor">
<description summary="destroy the pointer constraints manager object">
Used by the client to notify the server that it will no longer use this
pointer constraints object.
</description>
</request>
<request name="lock_pointer">
<description summary="lock pointer to a position">
The lock_pointer request lets the client request to disable movements of
the virtual pointer (i.e. the cursor), effectively locking the pointer
to a position. This request may not take effect immediately; in the
future, when the compositor deems implementation-specific constraints
are satisfied, the pointer lock will be activated and the compositor
sends a locked event.
The protocol provides no guarantee that the constraints are ever
satisfied, and does not require the compositor to send an error if the
constraints cannot ever be satisfied. It is thus possible to request a
lock that will never activate.
There may not be another pointer constraint of any kind requested or
active on the surface for any of the wl_pointer objects of the seat of
the passed pointer when requesting a lock. If there is, an error will be
raised. See general pointer lock documentation for more details.
The intersection of the region passed with this request and the input
region of the surface is used to determine where the pointer must be
in order for the lock to activate. It is up to the compositor whether to
warp the pointer or require some kind of user interaction for the lock
to activate. If the region is null the surface input region is used.
A surface may receive pointer focus without the lock being activated.
The request creates a new object wp_locked_pointer which is used to
interact with the lock as well as receive updates about its state. See
the the description of wp_locked_pointer for further information.
Note that while a pointer is locked, the wl_pointer objects of the
corresponding seat will not emit any wl_pointer.motion events, but
relative motion events will still be emitted via wp_relative_pointer
objects of the same seat. wl_pointer.axis and wl_pointer.button events
are unaffected.
</description>
<arg name="id" type="new_id" interface="zwp_locked_pointer_v1"/>
<arg name="surface" type="object" interface="wl_surface"
summary="surface to lock pointer to"/>
<arg name="pointer" type="object" interface="wl_pointer"
summary="the pointer that should be locked"/>
<arg name="region" type="object" interface="wl_region" allow-null="true"
summary="region of surface"/>
<arg name="lifetime" type="uint" summary="lock lifetime"/>
</request>
<request name="confine_pointer">
<description summary="confine pointer to a region">
The confine_pointer request lets the client request to confine the
pointer cursor to a given region. This request may not take effect
immediately; in the future, when the compositor deems implementation-
specific constraints are satisfied, the pointer confinement will be
activated and the compositor sends a confined event.
The intersection of the region passed with this request and the input
region of the surface is used to determine where the pointer must be
in order for the confinement to activate. It is up to the compositor
whether to warp the pointer or require some kind of user interaction for
the confinement to activate. If the region is null the surface input
region is used.
The request will create a new object wp_confined_pointer which is used
to interact with the confinement as well as receive updates about its
state. See the the description of wp_confined_pointer for further
information.
</description>
<arg name="id" type="new_id" interface="zwp_confined_pointer_v1"/>
<arg name="surface" type="object" interface="wl_surface"
summary="surface to lock pointer to"/>
<arg name="pointer" type="object" interface="wl_pointer"
summary="the pointer that should be confined"/>
<arg name="region" type="object" interface="wl_region" allow-null="true"
summary="region of surface"/>
<arg name="lifetime" type="uint" summary="confinement lifetime"/>
</request>
</interface>
<interface name="zwp_locked_pointer_v1" version="1">
<description summary="receive relative pointer motion events">
The wp_locked_pointer interface represents a locked pointer state.
While the lock of this object is active, the wl_pointer objects of the
associated seat will not emit any wl_pointer.motion events.
This object will send the event 'locked' when the lock is activated.
Whenever the lock is activated, it is guaranteed that the locked surface
will already have received pointer focus and that the pointer will be
within the region passed to the request creating this object.
To unlock the pointer, send the destroy request. This will also destroy
the wp_locked_pointer object.
If the compositor decides to unlock the pointer the unlocked event is
sent. See wp_locked_pointer.unlock for details.
When unlocking, the compositor may warp the cursor position to the set
cursor position hint. If it does, it will not result in any relative
motion events emitted via wp_relative_pointer.
If the surface the lock was requested on is destroyed and the lock is not
yet activated, the wp_locked_pointer object is now defunct and must be
destroyed.
</description>
<request name="destroy" type="destructor">
<description summary="destroy the locked pointer object">
Destroy the locked pointer object. If applicable, the compositor will
unlock the pointer.
</description>
</request>
<request name="set_cursor_position_hint">
<description summary="set the pointer cursor position hint">
Set the cursor position hint relative to the top left corner of the
surface.
If the client is drawing its own cursor, it should update the position
hint to the position of its own cursor. A compositor may use this
information to warp the pointer upon unlock in order to avoid pointer
jumps.
The cursor position hint is double buffered. The new hint will only take
effect when the associated surface gets it pending state applied. See
wl_surface.commit for details.
</description>
<arg name="surface_x" type="fixed"
summary="surface-local x coordinate"/>
<arg name="surface_y" type="fixed"
summary="surface-local y coordinate"/>
</request>
<request name="set_region">
<description summary="set a new lock region">
Set a new region used to lock the pointer.
The new lock region is double-buffered. The new lock region will
only take effect when the associated surface gets its pending state
applied. See wl_surface.commit for details.
For details about the lock region, see wp_locked_pointer.
</description>
<arg name="region" type="object" interface="wl_region" allow-null="true"
summary="region of surface"/>
</request>
<event name="locked">
<description summary="lock activation event">
Notification that the pointer lock of the seat's pointer is activated.
</description>
</event>
<event name="unlocked">
<description summary="lock deactivation event">
Notification that the pointer lock of the seat's pointer is no longer
active. If this is a oneshot pointer lock (see
wp_pointer_constraints.lifetime) this object is now defunct and should
be destroyed. If this is a persistent pointer lock (see
wp_pointer_constraints.lifetime) this pointer lock may again
reactivate in the future.
</description>
</event>
</interface>
<interface name="zwp_confined_pointer_v1" version="1">
<description summary="confined pointer object">
The wp_confined_pointer interface represents a confined pointer state.
This object will send the event 'confined' when the confinement is
activated. Whenever the confinement is activated, it is guaranteed that
the surface the pointer is confined to will already have received pointer
focus and that the pointer will be within the region passed to the request
creating this object. It is up to the compositor to decide whether this
requires some user interaction and if the pointer will warp to within the
passed region if outside.
To unconfine the pointer, send the destroy request. This will also destroy
the wp_confined_pointer object.
If the compositor decides to unconfine the pointer the unconfined event is
sent. The wp_confined_pointer object is at this point defunct and should
be destroyed.
</description>
<request name="destroy" type="destructor">
<description summary="destroy the confined pointer object">
Destroy the confined pointer object. If applicable, the compositor will
unconfine the pointer.
</description>
</request>
<request name="set_region">
<description summary="set a new confine region">
Set a new region used to confine the pointer.
The new confine region is double-buffered. The new confine region will
only take effect when the associated surface gets its pending state
applied. See wl_surface.commit for details.
If the confinement is active when the new confinement region is applied
and the pointer ends up outside of newly applied region, the pointer may
warped to a position within the new confinement region. If warped, a
wl_pointer.motion event will be emitted, but no
wp_relative_pointer.relative_motion event.
The compositor may also, instead of using the new region, unconfine the
pointer.
For details about the confine region, see wp_confined_pointer.
</description>
<arg name="region" type="object" interface="wl_region" allow-null="true"
summary="region of surface"/>
</request>
<event name="confined">
<description summary="pointer confined">
Notification that the pointer confinement of the seat's pointer is
activated.
</description>
</event>
<event name="unconfined">
<description summary="pointer unconfined">
Notification that the pointer confinement of the seat's pointer is no
longer active. If this is a oneshot pointer confinement (see
wp_pointer_constraints.lifetime) this object is now defunct and should
be destroyed. If this is a persistent pointer confinement (see
wp_pointer_constraints.lifetime) this pointer confinement may again
reactivate in the future.
</description>
</event>
</interface>
</protocol>

View File

@ -0,0 +1,225 @@
<?xml version="1.0" encoding="UTF-8"?>
<protocol name="wp_primary_selection_unstable_v1">
<copyright>
Copyright © 2015, 2016 Red Hat
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice (including the next
paragraph) shall be included in all copies or substantial portions of the
Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
</copyright>
<description summary="Primary selection protocol">
This protocol provides the ability to have a primary selection device to
match that of the X server. This primary selection is a shortcut to the
common clipboard selection, where text just needs to be selected in order
to allow copying it elsewhere. The de facto way to perform this action
is the middle mouse button, although it is not limited to this one.
Clients wishing to honor primary selection should create a primary
selection source and set it as the selection through
wp_primary_selection_device.set_selection whenever the text selection
changes. In order to minimize calls in pointer-driven text selection,
it should happen only once after the operation finished. Similarly,
a NULL source should be set when text is unselected.
wp_primary_selection_offer objects are first announced through the
wp_primary_selection_device.data_offer event. Immediately after this event,
the primary data offer will emit wp_primary_selection_offer.offer events
to let know of the mime types being offered.
When the primary selection changes, the client with the keyboard focus
will receive wp_primary_selection_device.selection events. Only the client
with the keyboard focus will receive such events with a non-NULL
wp_primary_selection_offer. Across keyboard focus changes, previously
focused clients will receive wp_primary_selection_device.events with a
NULL wp_primary_selection_offer.
In order to request the primary selection data, the client must pass
a recent serial pertaining to the press event that is triggering the
operation, if the compositor deems the serial valid and recent, the
wp_primary_selection_source.send event will happen in the other end
to let the transfer begin. The client owning the primary selection
should write the requested data, and close the file descriptor
immediately.
If the primary selection owner client disappeared during the transfer,
the client reading the data will receive a
wp_primary_selection_device.selection event with a NULL
wp_primary_selection_offer, the client should take this as a hint
to finish the reads related to the no longer existing offer.
The primary selection owner should be checking for errors during
writes, merely cancelling the ongoing transfer if any happened.
</description>
<interface name="zwp_primary_selection_device_manager_v1" version="1">
<description summary="X primary selection emulation">
The primary selection device manager is a singleton global object that
provides access to the primary selection. It allows to create
wp_primary_selection_source objects, as well as retrieving the per-seat
wp_primary_selection_device objects.
</description>
<request name="create_source">
<description summary="create a new primary selection source">
Create a new primary selection source.
</description>
<arg name="id" type="new_id" interface="zwp_primary_selection_source_v1"/>
</request>
<request name="get_device">
<description summary="create a new primary selection device">
Create a new data device for a given seat.
</description>
<arg name="id" type="new_id" interface="zwp_primary_selection_device_v1"/>
<arg name="seat" type="object" interface="wl_seat"/>
</request>
<request name="destroy" type="destructor">
<description summary="destroy the primary selection device manager">
Destroy the primary selection device manager.
</description>
</request>
</interface>
<interface name="zwp_primary_selection_device_v1" version="1">
<request name="set_selection">
<description summary="set the primary selection">
Replaces the current selection. The previous owner of the primary
selection will receive a wp_primary_selection_source.cancelled event.
To unset the selection, set the source to NULL.
</description>
<arg name="source" type="object" interface="zwp_primary_selection_source_v1" allow-null="true"/>
<arg name="serial" type="uint" summary="serial of the event that triggered this request"/>
</request>
<event name="data_offer">
<description summary="introduce a new wp_primary_selection_offer">
Introduces a new wp_primary_selection_offer object that may be used
to receive the current primary selection. Immediately following this
event, the new wp_primary_selection_offer object will send
wp_primary_selection_offer.offer events to describe the offered mime
types.
</description>
<arg name="offer" type="new_id" interface="zwp_primary_selection_offer_v1"/>
</event>
<event name="selection">
<description summary="advertise a new primary selection">
The wp_primary_selection_device.selection event is sent to notify the
client of a new primary selection. This event is sent after the
wp_primary_selection.data_offer event introducing this object, and after
the offer has announced its mimetypes through
wp_primary_selection_offer.offer.
The data_offer is valid until a new offer or NULL is received
or until the client loses keyboard focus. The client must destroy the
previous selection data_offer, if any, upon receiving this event.
</description>
<arg name="id" type="object" interface="zwp_primary_selection_offer_v1" allow-null="true"/>
</event>
<request name="destroy" type="destructor">
<description summary="destroy the primary selection device">
Destroy the primary selection device.
</description>
</request>
</interface>
<interface name="zwp_primary_selection_offer_v1" version="1">
<description summary="offer to transfer primary selection contents">
A wp_primary_selection_offer represents an offer to transfer the contents
of the primary selection clipboard to the client. Similar to
wl_data_offer, the offer also describes the mime types that the data can
be converted to and provides the mechanisms for transferring the data
directly to the client.
</description>
<request name="receive">
<description summary="request that the data is transferred">
To transfer the contents of the primary selection clipboard, the client
issues this request and indicates the mime type that it wants to
receive. The transfer happens through the passed file descriptor
(typically created with the pipe system call). The source client writes
the data in the mime type representation requested and then closes the
file descriptor.
The receiving client reads from the read end of the pipe until EOF and
closes its end, at which point the transfer is complete.
</description>
<arg name="mime_type" type="string"/>
<arg name="fd" type="fd"/>
</request>
<request name="destroy" type="destructor">
<description summary="destroy the primary selection offer">
Destroy the primary selection offer.
</description>
</request>
<event name="offer">
<description summary="advertise offered mime type">
Sent immediately after creating announcing the
wp_primary_selection_offer through
wp_primary_selection_device.data_offer. One event is sent per offered
mime type.
</description>
<arg name="mime_type" type="string"/>
</event>
</interface>
<interface name="zwp_primary_selection_source_v1" version="1">
<description summary="offer to replace the contents of the primary selection">
The source side of a wp_primary_selection_offer, it provides a way to
describe the offered data and respond to requests to transfer the
requested contents of the primary selection clipboard.
</description>
<request name="offer">
<description summary="add an offered mime type">
This request adds a mime type to the set of mime types advertised to
targets. Can be called several times to offer multiple types.
</description>
<arg name="mime_type" type="string"/>
</request>
<request name="destroy" type="destructor">
<description summary="destroy the primary selection source">
Destroy the primary selection source.
</description>
</request>
<event name="send">
<description summary="send the primary selection contents">
Request for the current primary selection contents from the client.
Send the specified mime type over the passed file descriptor, then
close it.
</description>
<arg name="mime_type" type="string"/>
<arg name="fd" type="fd"/>
</event>
<event name="cancelled">
<description summary="request for primary selection contents was canceled">
This primary selection source is no longer valid. The client should
clean up and destroy this primary selection source.
</description>
</event>
</interface>
</protocol>

View File

@ -0,0 +1,136 @@
<?xml version="1.0" encoding="UTF-8"?>
<protocol name="relative_pointer_unstable_v1">
<copyright>
Copyright © 2014 Jonas Ådahl
Copyright © 2015 Red Hat Inc.
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice (including the next
paragraph) shall be included in all copies or substantial portions of the
Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
</copyright>
<description summary="protocol for relative pointer motion events">
This protocol specifies a set of interfaces used for making clients able to
receive relative pointer events not obstructed by barriers (such as the
monitor edge or other pointer barriers).
To start receiving relative pointer events, a client must first bind the
global interface "wp_relative_pointer_manager" which, if a compositor
supports relative pointer motion events, is exposed by the registry. After
having created the relative pointer manager proxy object, the client uses
it to create the actual relative pointer object using the
"get_relative_pointer" request given a wl_pointer. The relative pointer
motion events will then, when applicable, be transmitted via the proxy of
the newly created relative pointer object. See the documentation of the
relative pointer interface for more details.
Warning! The protocol described in this file is experimental and backward
incompatible changes may be made. Backward compatible changes may be added
together with the corresponding interface version bump. Backward
incompatible changes are done by bumping the version number in the protocol
and interface names and resetting the interface version. Once the protocol
is to be declared stable, the 'z' prefix and the version number in the
protocol and interface names are removed and the interface version number is
reset.
</description>
<interface name="zwp_relative_pointer_manager_v1" version="1">
<description summary="get relative pointer objects">
A global interface used for getting the relative pointer object for a
given pointer.
</description>
<request name="destroy" type="destructor">
<description summary="destroy the relative pointer manager object">
Used by the client to notify the server that it will no longer use this
relative pointer manager object.
</description>
</request>
<request name="get_relative_pointer">
<description summary="get a relative pointer object">
Create a relative pointer interface given a wl_pointer object. See the
wp_relative_pointer interface for more details.
</description>
<arg name="id" type="new_id" interface="zwp_relative_pointer_v1"/>
<arg name="pointer" type="object" interface="wl_pointer"/>
</request>
</interface>
<interface name="zwp_relative_pointer_v1" version="1">
<description summary="relative pointer object">
A wp_relative_pointer object is an extension to the wl_pointer interface
used for emitting relative pointer events. It shares the same focus as
wl_pointer objects of the same seat and will only emit events when it has
focus.
</description>
<request name="destroy" type="destructor">
<description summary="release the relative pointer object"/>
</request>
<event name="relative_motion">
<description summary="relative pointer motion">
Relative x/y pointer motion from the pointer of the seat associated with
this object.
A relative motion is in the same dimension as regular wl_pointer motion
events, except they do not represent an absolute position. For example,
moving a pointer from (x, y) to (x', y') would have the equivalent
relative motion (x' - x, y' - y). If a pointer motion caused the
absolute pointer position to be clipped by for example the edge of the
monitor, the relative motion is unaffected by the clipping and will
represent the unclipped motion.
This event also contains non-accelerated motion deltas. The
non-accelerated delta is, when applicable, the regular pointer motion
delta as it was before having applied motion acceleration and other
transformations such as normalization.
Note that the non-accelerated delta does not represent 'raw' events as
they were read from some device. Pointer motion acceleration is device-
and configuration-specific and non-accelerated deltas and accelerated
deltas may have the same value on some devices.
Relative motions are not coupled to wl_pointer.motion events, and can be
sent in combination with such events, but also independently. There may
also be scenarios where wl_pointer.motion is sent, but there is no
relative motion. The order of an absolute and relative motion event
originating from the same physical motion is not guaranteed.
If the client needs button events or focus state, it can receive them
from a wl_pointer object of the same seat that the wp_relative_pointer
object is associated with.
</description>
<arg name="utime_hi" type="uint"
summary="high 32 bits of a 64 bit timestamp with microsecond granularity"/>
<arg name="utime_lo" type="uint"
summary="low 32 bits of a 64 bit timestamp with microsecond granularity"/>
<arg name="dx" type="fixed"
summary="the x component of the motion vector"/>
<arg name="dy" type="fixed"
summary="the y component of the motion vector"/>
<arg name="dx_unaccel" type="fixed"
summary="the x component of the unaccelerated motion vector"/>
<arg name="dy_unaccel" type="fixed"
summary="the y component of the unaccelerated motion vector"/>
</event>
</interface>
</protocol>

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,452 @@
<?xml version="1.0" encoding="UTF-8"?>
<protocol name="text_input_unstable_v3">
<copyright>
Copyright © 2012, 2013 Intel Corporation
Copyright © 2015, 2016 Jan Arne Petersen
Copyright © 2017, 2018 Red Hat, Inc.
Copyright © 2018 Purism SPC
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
the copyright holders not be used in advertising or publicity
pertaining to distribution of the software without specific,
written prior permission. The copyright holders make no
representations about the suitability of this software for any
purpose. It is provided "as is" without express or implied
warranty.
THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.
</copyright>
<description summary="Protocol for composing text">
This protocol allows compositors to act as input methods and to send text
to applications. A text input object is used to manage state of what are
typically text entry fields in the application.
This document adheres to the RFC 2119 when using words like "must",
"should", "may", etc.
Warning! The protocol described in this file is experimental and
backward incompatible changes may be made. Backward compatible changes
may be added together with the corresponding interface version bump.
Backward incompatible changes are done by bumping the version number in
the protocol and interface names and resetting the interface version.
Once the protocol is to be declared stable, the 'z' prefix and the
version number in the protocol and interface names are removed and the
interface version number is reset.
</description>
<interface name="zwp_text_input_v3" version="1">
<description summary="text input">
The zwp_text_input_v3 interface represents text input and input methods
associated with a seat. It provides enter/leave events to follow the
text input focus for a seat.
Requests are used to enable/disable the text-input object and set
state information like surrounding and selected text or the content type.
The information about the entered text is sent to the text-input object
via the preedit_string and commit_string events.
Text is valid UTF-8 encoded, indices and lengths are in bytes. Indices
must not point to middle bytes inside a code point: they must either
point to the first byte of a code point or to the end of the buffer.
Lengths must be measured between two valid indices.
Focus moving throughout surfaces will result in the emission of
zwp_text_input_v3.enter and zwp_text_input_v3.leave events. The focused
surface must commit zwp_text_input_v3.enable and
zwp_text_input_v3.disable requests as the keyboard focus moves across
editable and non-editable elements of the UI. Those two requests are not
expected to be paired with each other, the compositor must be able to
handle consecutive series of the same request.
State is sent by the state requests (set_surrounding_text,
set_content_type and set_cursor_rectangle) and a commit request. After an
enter event or disable request all state information is invalidated and
needs to be resent by the client.
</description>
<request name="destroy" type="destructor">
<description summary="Destroy the wp_text_input">
Destroy the wp_text_input object. Also disables all surfaces enabled
through this wp_text_input object.
</description>
</request>
<request name="enable">
<description summary="Request text input to be enabled">
Requests text input on the surface previously obtained from the enter
event.
This request must be issued every time the active text input changes
to a new one, including within the current surface. Use
zwp_text_input_v3.disable when there is no longer any input focus on
the current surface.
Clients must not enable more than one text input on the single seat
and should disable the current text input before enabling the new one.
At most one instance of text input may be in enabled state per instance,
Requests to enable the another text input when some text input is active
must be ignored by compositor.
This request resets all state associated with previous enable, disable,
set_surrounding_text, set_text_change_cause, set_content_type, and
set_cursor_rectangle requests, as well as the state associated with
preedit_string, commit_string, and delete_surrounding_text events.
The set_surrounding_text, set_content_type and set_cursor_rectangle
requests must follow if the text input supports the necessary
functionality.
State set with this request is double-buffered. It will get applied on
the next zwp_text_input_v3.commit request, and stay valid until the
next committed enable or disable request.
The changes must be applied by the compositor after issuing a
zwp_text_input_v3.commit request.
</description>
</request>
<request name="disable">
<description summary="Disable text input on a surface">
Explicitly disable text input on the current surface (typically when
there is no focus on any text entry inside the surface).
State set with this request is double-buffered. It will get applied on
the next zwp_text_input_v3.commit request.
</description>
</request>
<request name="set_surrounding_text">
<description summary="sets the surrounding text">
Sets the surrounding plain text around the input, excluding the preedit
text.
The client should notify the compositor of any changes in any of the
values carried with this request, including changes caused by handling
incoming text-input events as well as changes caused by other
mechanisms like keyboard typing.
If the client is unaware of the text around the cursor, it should not
issue this request, to signify lack of support to the compositor.
Text is UTF-8 encoded, and should include the cursor position, the
complete selection and additional characters before and after them.
There is a maximum length of wayland messages, so text can not be
longer than 4000 bytes.
Cursor is the byte offset of the cursor within text buffer.
Anchor is the byte offset of the selection anchor within text buffer.
If there is no selected text, anchor is the same as cursor.
If any preedit text is present, it is replaced with a cursor for the
purpose of this event.
Values set with this request are double-buffered. They will get applied
on the next zwp_text_input_v3.commit request, and stay valid until the
next committed enable or disable request.
The initial state for affected fields is empty, meaning that the text
input does not support sending surrounding text. If the empty values
get applied, subsequent attempts to change them may have no effect.
</description>
<arg name="text" type="string"/>
<arg name="cursor" type="int"/>
<arg name="anchor" type="int"/>
</request>
<enum name="change_cause">
<description summary="text change reason">
Reason for the change of surrounding text or cursor posision.
</description>
<entry name="input_method" value="0" summary="input method caused the change"/>
<entry name="other" value="1" summary="something else than the input method caused the change"/>
</enum>
<request name="set_text_change_cause">
<description summary="indicates the cause of surrounding text change">
Tells the compositor why the text surrounding the cursor changed.
Whenever the client detects an external change in text, cursor, or
anchor posision, it must issue this request to the compositor. This
request is intended to give the input method a chance to update the
preedit text in an appropriate way, e.g. by removing it when the user
starts typing with a keyboard.
cause describes the source of the change.
The value set with this request is double-buffered. It must be applied
and reset to initial at the next zwp_text_input_v3.commit request.
The initial value of cause is input_method.
</description>
<arg name="cause" type="uint" enum="change_cause"/>
</request>
<enum name="content_hint" bitfield="true">
<description summary="content hint">
Content hint is a bitmask to allow to modify the behavior of the text
input.
</description>
<entry name="none" value="0x0" summary="no special behavior"/>
<entry name="completion" value="0x1" summary="suggest word completions"/>
<entry name="spellcheck" value="0x2" summary="suggest word corrections"/>
<entry name="auto_capitalization" value="0x4" summary="switch to uppercase letters at the start of a sentence"/>
<entry name="lowercase" value="0x8" summary="prefer lowercase letters"/>
<entry name="uppercase" value="0x10" summary="prefer uppercase letters"/>
<entry name="titlecase" value="0x20" summary="prefer casing for titles and headings (can be language dependent)"/>
<entry name="hidden_text" value="0x40" summary="characters should be hidden"/>
<entry name="sensitive_data" value="0x80" summary="typed text should not be stored"/>
<entry name="latin" value="0x100" summary="just Latin characters should be entered"/>
<entry name="multiline" value="0x200" summary="the text input is multiline"/>
</enum>
<enum name="content_purpose">
<description summary="content purpose">
The content purpose allows to specify the primary purpose of a text
input.
This allows an input method to show special purpose input panels with
extra characters or to disallow some characters.
</description>
<entry name="normal" value="0" summary="default input, allowing all characters"/>
<entry name="alpha" value="1" summary="allow only alphabetic characters"/>
<entry name="digits" value="2" summary="allow only digits"/>
<entry name="number" value="3" summary="input a number (including decimal separator and sign)"/>
<entry name="phone" value="4" summary="input a phone number"/>
<entry name="url" value="5" summary="input an URL"/>
<entry name="email" value="6" summary="input an email address"/>
<entry name="name" value="7" summary="input a name of a person"/>
<entry name="password" value="8" summary="input a password (combine with sensitive_data hint)"/>
<entry name="pin" value="9" summary="input is a numeric password (combine with sensitive_data hint)"/>
<entry name="date" value="10" summary="input a date"/>
<entry name="time" value="11" summary="input a time"/>
<entry name="datetime" value="12" summary="input a date and time"/>
<entry name="terminal" value="13" summary="input for a terminal"/>
</enum>
<request name="set_content_type">
<description summary="set content purpose and hint">
Sets the content purpose and content hint. While the purpose is the
basic purpose of an input field, the hint flags allow to modify some of
the behavior.
Values set with this request are double-buffered. They will get applied
on the next zwp_text_input_v3.commit request.
Subsequent attempts to update them may have no effect. The values
remain valid until the next committed enable or disable request.
The initial value for hint is none, and the initial value for purpose
is normal.
</description>
<arg name="hint" type="uint" enum="content_hint"/>
<arg name="purpose" type="uint" enum="content_purpose"/>
</request>
<request name="set_cursor_rectangle">
<description summary="set cursor position">
Marks an area around the cursor as a x, y, width, height rectangle in
surface local coordinates.
Allows the compositor to put a window with word suggestions near the
cursor, without obstructing the text being input.
If the client is unaware of the position of edited text, it should not
issue this request, to signify lack of support to the compositor.
Values set with this request are double-buffered. They will get applied
on the next zwp_text_input_v3.commit request, and stay valid until the
next committed enable or disable request.
The initial values describing a cursor rectangle are empty. That means
the text input does not support describing the cursor area. If the
empty values get applied, subsequent attempts to change them may have
no effect.
</description>
<arg name="x" type="int"/>
<arg name="y" type="int"/>
<arg name="width" type="int"/>
<arg name="height" type="int"/>
</request>
<request name="commit">
<description summary="commit state">
Atomically applies state changes recently sent to the compositor.
The commit request establishes and updates the state of the client, and
must be issued after any changes to apply them.
Text input state (enabled status, content purpose, content hint,
surrounding text and change cause, cursor rectangle) is conceptually
double-buffered within the context of a text input, i.e. between a
committed enable request and the following committed enable or disable
request.
Protocol requests modify the pending state, as opposed to the current
state in use by the input method. A commit request atomically applies
all pending state, replacing the current state. After commit, the new
pending state is as documented for each related request.
Requests are applied in the order of arrival.
Neither current nor pending state are modified unless noted otherwise.
The compositor must count the number of commit requests coming from
each zwp_text_input_v3 object and use the count as the serial in done
events.
</description>
</request>
<event name="enter">
<description summary="enter event">
Notification that this seat's text-input focus is on a certain surface.
If client has created multiple text input objects, compositor must send
this event to all of them.
When the seat has the keyboard capability the text-input focus follows
the keyboard focus. This event sets the current surface for the
text-input object.
</description>
<arg name="surface" type="object" interface="wl_surface"/>
</event>
<event name="leave">
<description summary="leave event">
Notification that this seat's text-input focus is no longer on a
certain surface. The client should reset any preedit string previously
set.
The leave notification clears the current surface. It is sent before
the enter notification for the new focus. After leave event, compositor
must ignore requests from any text input instances until next enter
event.
When the seat has the keyboard capability the text-input focus follows
the keyboard focus.
</description>
<arg name="surface" type="object" interface="wl_surface"/>
</event>
<event name="preedit_string">
<description summary="pre-edit">
Notify when a new composing text (pre-edit) should be set at the
current cursor position. Any previously set composing text must be
removed. Any previously existing selected text must be removed.
The argument text contains the pre-edit string buffer.
The parameters cursor_begin and cursor_end are counted in bytes
relative to the beginning of the submitted text buffer. Cursor should
be hidden when both are equal to -1.
They could be represented by the client as a line if both values are
the same, or as a text highlight otherwise.
Values set with this event are double-buffered. They must be applied
and reset to initial on the next zwp_text_input_v3.done event.
The initial value of text is an empty string, and cursor_begin,
cursor_end and cursor_hidden are all 0.
</description>
<arg name="text" type="string" allow-null="true"/>
<arg name="cursor_begin" type="int"/>
<arg name="cursor_end" type="int"/>
</event>
<event name="commit_string">
<description summary="text commit">
Notify when text should be inserted into the editor widget. The text to
commit could be either just a single character after a key press or the
result of some composing (pre-edit).
Values set with this event are double-buffered. They must be applied
and reset to initial on the next zwp_text_input_v3.done event.
The initial value of text is an empty string.
</description>
<arg name="text" type="string" allow-null="true"/>
</event>
<event name="delete_surrounding_text">
<description summary="delete surrounding text">
Notify when the text around the current cursor position should be
deleted.
Before_length and after_length are the number of bytes before and after
the current cursor index (excluding the selection) to delete.
If a preedit text is present, in effect before_length is counted from
the beginning of it, and after_length from its end (see done event
sequence).
Values set with this event are double-buffered. They must be applied
and reset to initial on the next zwp_text_input_v3.done event.
The initial values of both before_length and after_length are 0.
</description>
<arg name="before_length" type="uint" summary="length of text before current cursor position"/>
<arg name="after_length" type="uint" summary="length of text after current cursor position"/>
</event>
<event name="done">
<description summary="apply changes">
Instruct the application to apply changes to state requested by the
preedit_string, commit_string and delete_surrounding_text events. The
state relating to these events is double-buffered, and each one
modifies the pending state. This event replaces the current state with
the pending state.
The application must proceed by evaluating the changes in the following
order:
1. Replace existing preedit string with the cursor.
2. Delete requested surrounding text.
3. Insert commit string with the cursor at its end.
4. Calculate surrounding text to send.
5. Insert new preedit text in cursor position.
6. Place cursor inside preedit text.
The serial number reflects the last state of the zwp_text_input_v3
object known to the compositor. The value of the serial argument must
be equal to the number of commit requests already issued on that object.
When the client receives a done event with a serial different than the
number of past commit requests, it must proceed as normal, except it
should not change the current state of the zwp_text_input_v3 object.
</description>
<arg name="serial" type="uint"/>
</event>
</interface>
<interface name="zwp_text_input_manager_v3" version="1">
<description summary="text input manager">
A factory for text-input objects. This object is a global singleton.
</description>
<request name="destroy" type="destructor">
<description summary="Destroy the wp_text_input_manager">
Destroy the wp_text_input_manager object.
</description>
</request>
<request name="get_text_input">
<description summary="create a new text input object">
Creates a new text-input object for a given seat.
</description>
<arg name="id" type="new_id" interface="zwp_text_input_v3"/>
<arg name="seat" type="object" interface="wl_seat"/>
</request>
</interface>
</protocol>

View File

@ -0,0 +1,186 @@
<?xml version="1.0" encoding="UTF-8"?>
<protocol name="viewporter">
<copyright>
Copyright © 2013-2016 Collabora, Ltd.
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice (including the next
paragraph) shall be included in all copies or substantial portions of the
Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
</copyright>
<interface name="wp_viewporter" version="1">
<description summary="surface cropping and scaling">
The global interface exposing surface cropping and scaling
capabilities is used to instantiate an interface extension for a
wl_surface object. This extended interface will then allow
cropping and scaling the surface contents, effectively
disconnecting the direct relationship between the buffer and the
surface size.
</description>
<request name="destroy" type="destructor">
<description summary="unbind from the cropping and scaling interface">
Informs the server that the client will not be using this
protocol object anymore. This does not affect any other objects,
wp_viewport objects included.
</description>
</request>
<enum name="error">
<entry name="viewport_exists" value="0"
summary="the surface already has a viewport object associated"/>
</enum>
<request name="get_viewport">
<description summary="extend surface interface for crop and scale">
Instantiate an interface extension for the given wl_surface to
crop and scale its content. If the given wl_surface already has
a wp_viewport object associated, the viewport_exists
protocol error is raised.
</description>
<arg name="id" type="new_id" interface="wp_viewport"
summary="the new viewport interface id"/>
<arg name="surface" type="object" interface="wl_surface"
summary="the surface"/>
</request>
</interface>
<interface name="wp_viewport" version="1">
<description summary="crop and scale interface to a wl_surface">
An additional interface to a wl_surface object, which allows the
client to specify the cropping and scaling of the surface
contents.
This interface works with two concepts: the source rectangle (src_x,
src_y, src_width, src_height), and the destination size (dst_width,
dst_height). The contents of the source rectangle are scaled to the
destination size, and content outside the source rectangle is ignored.
This state is double-buffered, and is applied on the next
wl_surface.commit.
The two parts of crop and scale state are independent: the source
rectangle, and the destination size. Initially both are unset, that
is, no scaling is applied. The whole of the current wl_buffer is
used as the source, and the surface size is as defined in
wl_surface.attach.
If the destination size is set, it causes the surface size to become
dst_width, dst_height. The source (rectangle) is scaled to exactly
this size. This overrides whatever the attached wl_buffer size is,
unless the wl_buffer is NULL. If the wl_buffer is NULL, the surface
has no content and therefore no size. Otherwise, the size is always
at least 1x1 in surface local coordinates.
If the source rectangle is set, it defines what area of the wl_buffer is
taken as the source. If the source rectangle is set and the destination
size is not set, then src_width and src_height must be integers, and the
surface size becomes the source rectangle size. This results in cropping
without scaling. If src_width or src_height are not integers and
destination size is not set, the bad_size protocol error is raised when
the surface state is applied.
The coordinate transformations from buffer pixel coordinates up to
the surface-local coordinates happen in the following order:
1. buffer_transform (wl_surface.set_buffer_transform)
2. buffer_scale (wl_surface.set_buffer_scale)
3. crop and scale (wp_viewport.set*)
This means, that the source rectangle coordinates of crop and scale
are given in the coordinates after the buffer transform and scale,
i.e. in the coordinates that would be the surface-local coordinates
if the crop and scale was not applied.
If src_x or src_y are negative, the bad_value protocol error is raised.
Otherwise, if the source rectangle is partially or completely outside of
the non-NULL wl_buffer, then the out_of_buffer protocol error is raised
when the surface state is applied. A NULL wl_buffer does not raise the
out_of_buffer error.
The x, y arguments of wl_surface.attach are applied as normal to
the surface. They indicate how many pixels to remove from the
surface size from the left and the top. In other words, they are
still in the surface-local coordinate system, just like dst_width
and dst_height are.
If the wl_surface associated with the wp_viewport is destroyed,
all wp_viewport requests except 'destroy' raise the protocol error
no_surface.
If the wp_viewport object is destroyed, the crop and scale
state is removed from the wl_surface. The change will be applied
on the next wl_surface.commit.
</description>
<request name="destroy" type="destructor">
<description summary="remove scaling and cropping from the surface">
The associated wl_surface's crop and scale state is removed.
The change is applied on the next wl_surface.commit.
</description>
</request>
<enum name="error">
<entry name="bad_value" value="0"
summary="negative or zero values in width or height"/>
<entry name="bad_size" value="1"
summary="destination size is not integer"/>
<entry name="out_of_buffer" value="2"
summary="source rectangle extends outside of the content area"/>
<entry name="no_surface" value="3"
summary="the wl_surface was destroyed"/>
</enum>
<request name="set_source">
<description summary="set the source rectangle for cropping">
Set the source rectangle of the associated wl_surface. See
wp_viewport for the description, and relation to the wl_buffer
size.
If all of x, y, width and height are -1.0, the source rectangle is
unset instead. Any other set of values where width or height are zero
or negative, or x or y are negative, raise the bad_value protocol
error.
The crop and scale state is double-buffered state, and will be
applied on the next wl_surface.commit.
</description>
<arg name="x" type="fixed" summary="source rectangle x"/>
<arg name="y" type="fixed" summary="source rectangle y"/>
<arg name="width" type="fixed" summary="source rectangle width"/>
<arg name="height" type="fixed" summary="source rectangle height"/>
</request>
<request name="set_destination">
<description summary="set the surface size for scaling">
Set the destination size of the associated wl_surface. See
wp_viewport for the description, and relation to the wl_buffer
size.
If width is -1 and height is -1, the destination size is unset
instead. Any other pair of values for width and height that
contains zero or negative values raises the bad_value protocol
error.
The crop and scale state is double-buffered state, and will be
applied on the next wl_surface.commit.
</description>
<arg name="width" type="int" summary="surface width"/>
<arg name="height" type="int" summary="surface height"/>
</request>
</interface>
</protocol>

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,186 @@
<?xml version="1.0" encoding="UTF-8"?>
<protocol name="xdg_activation_v1">
<copyright>
Copyright © 2020 Aleix Pol Gonzalez &lt;aleixpol@kde.org&gt;
Copyright © 2020 Carlos Garnacho &lt;carlosg@gnome.org&gt;
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice (including the next
paragraph) shall be included in all copies or substantial portions of the
Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
</copyright>
<description summary="Protocol for requesting activation of surfaces">
The way for a client to pass focus to another toplevel is as follows.
The client that intends to activate another toplevel uses the
xdg_activation_v1.get_activation_token request to get an activation token.
This token is then passed to the client to be activated through a separate
band of communication. The client to be activated will then pass the token
it received to the xdg_activation_v1.activate request. The compositor can
then use this token to decide how to react to the activation request.
The token the activating client gets may be ineffective either already at
the time it receives it, for example if it was not focused, for focus
stealing prevention. The activating client will have no way to discover
the validity of the token, and may still forward it to the to be activated
client.
The created activation token may optionally get information attached to it
that can be used by the compositor to identify the application that we
intend to activate. This can for example be used to display a visual hint
about what application is being started.
Warning! The protocol described in this file is currently in the testing
phase. Backward compatible changes may be added together with the
corresponding interface version bump. Backward incompatible changes can
only be done by creating a new major version of the extension.
</description>
<interface name="xdg_activation_v1" version="1">
<description summary="interface for activating surfaces">
A global interface used for informing the compositor about applications
being activated or started, or for applications to request to be
activated.
</description>
<request name="destroy" type="destructor">
<description summary="destroy the xdg_activation object">
Notify the compositor that the xdg_activation object will no longer be
used.
The child objects created via this interface are unaffected and should
be destroyed separately.
</description>
</request>
<request name="get_activation_token">
<description summary="requests a token">
Creates an xdg_activation_token_v1 object that will provide
the initiating client with a unique token for this activation. This
token should be offered to the clients to be activated.
</description>
<arg name="id" type="new_id" interface="xdg_activation_token_v1"/>
</request>
<request name="activate">
<description summary="notify new interaction being available">
Requests surface activation. It's up to the compositor to display
this information as desired, for example by placing the surface above
the rest.
The compositor may know who requested this by checking the activation
token and might decide not to follow through with the activation if it's
considered unwanted.
Compositors can ignore unknown presentation tokens when an invalid
token is passed.
</description>
<arg name="token" type="string" summary="the activation token of the initiating client"/>
<arg name="surface" type="object" interface="wl_surface"
summary="the wl_surface to activate"/>
</request>
</interface>
<interface name="xdg_activation_token_v1" version="1">
<description summary="an exported activation handle">
An object for setting up a token and receiving a token handle that can
be passed as an activation token to another client.
The object is created using the xdg_activation_v1.get_activation_token
request. This object should then be populated with the app_id, surface
and serial information and committed. The compositor shall then issue a
done event with the token. In case the request's parameters are invalid,
the compositor will provide an invalid token.
</description>
<enum name="error">
<entry name="already_used" value="0"
summary="The token has already been used previously"/>
</enum>
<request name="set_serial">
<description summary="specifies the seat and serial of the activating event">
Provides information about the seat and serial event that requested the
token.
Must be sent before commit. This information is optional.
</description>
<arg name="serial" type="uint"
summary="the serial of the event that triggered the activation"/>
<arg name="seat" type="object" interface="wl_seat"
summary="the wl_seat of the event"/>
</request>
<request name="set_app_id">
<description summary="specifies the application being activated">
The requesting client can specify an app_id to associate the token
being created with it.
Must be sent before commit. This information is optional.
</description>
<arg name="app_id" type="string"
summary="the application id of the client being activated."/>
</request>
<request name="set_surface">
<description summary="specifies the application being activated">
The requesting client can specify a surface to associate the token
being created with it.
Must be triggered before commit. This information is optional.
</description>
<arg name="surface" type="object" interface="wl_surface"
summary="the requesting surface"/>
</request>
<request name="commit">
<description summary="issues the token request">
Requests an activation token based on the different parameters that
have been offered through set_serial, set_surface and set_app_id.
</description>
</request>
<event name="done">
<description summary="the exported activation token">
The 'done' event contains the unique token of this activation request
and notifies that the provider is done.
Applications will typically receive the token through the
XDG_ACTIVATION_TOKEN environment variable as set by its launcher, and
should unset the environment variable right after this request, in
order to avoid propagating it to child processes.
Applications implementing the D-Bus interface org.freedesktop.Application
should get their token under XDG_ACTIVATION_TOKEN on their platform_data.
Presentation tokens may be transferred across clients through means not
described in this protocol.
</description>
<arg name="token" type="string" summary="the exported activation token"/>
</event>
<request name="destroy" type="destructor">
<description summary="destroy the xdg_activation_token_v1 object">
Notify the compositor that the xdg_activation_token_v1 object will no
longer be used.
</description>
</request>
</interface>
</protocol>

View File

@ -0,0 +1,156 @@
<?xml version="1.0" encoding="UTF-8"?>
<protocol name="xdg_decoration_unstable_v1">
<copyright>
Copyright © 2018 Simon Ser
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice (including the next
paragraph) shall be included in all copies or substantial portions of the
Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
</copyright>
<interface name="zxdg_decoration_manager_v1" version="1">
<description summary="window decoration manager">
This interface allows a compositor to announce support for server-side
decorations.
A window decoration is a set of window controls as deemed appropriate by
the party managing them, such as user interface components used to move,
resize and change a window's state.
A client can use this protocol to request being decorated by a supporting
compositor.
If compositor and client do not negotiate the use of a server-side
decoration using this protocol, clients continue to self-decorate as they
see fit.
Warning! The protocol described in this file is experimental and
backward incompatible changes may be made. Backward compatible changes
may be added together with the corresponding interface version bump.
Backward incompatible changes are done by bumping the version number in
the protocol and interface names and resetting the interface version.
Once the protocol is to be declared stable, the 'z' prefix and the
version number in the protocol and interface names are removed and the
interface version number is reset.
</description>
<request name="destroy" type="destructor">
<description summary="destroy the decoration manager object">
Destroy the decoration manager. This doesn't destroy objects created
with the manager.
</description>
</request>
<request name="get_toplevel_decoration">
<description summary="create a new toplevel decoration object">
Create a new decoration object associated with the given toplevel.
Creating an xdg_toplevel_decoration from an xdg_toplevel which has a
buffer attached or committed is a client error, and any attempts by a
client to attach or manipulate a buffer prior to the first
xdg_toplevel_decoration.configure event must also be treated as
errors.
</description>
<arg name="id" type="new_id" interface="zxdg_toplevel_decoration_v1"/>
<arg name="toplevel" type="object" interface="xdg_toplevel"/>
</request>
</interface>
<interface name="zxdg_toplevel_decoration_v1" version="1">
<description summary="decoration object for a toplevel surface">
The decoration object allows the compositor to toggle server-side window
decorations for a toplevel surface. The client can request to switch to
another mode.
The xdg_toplevel_decoration object must be destroyed before its
xdg_toplevel.
</description>
<enum name="error">
<entry name="unconfigured_buffer" value="0"
summary="xdg_toplevel has a buffer attached before configure"/>
<entry name="already_constructed" value="1"
summary="xdg_toplevel already has a decoration object"/>
<entry name="orphaned" value="2"
summary="xdg_toplevel destroyed before the decoration object"/>
</enum>
<request name="destroy" type="destructor">
<description summary="destroy the decoration object">
Switch back to a mode without any server-side decorations at the next
commit.
</description>
</request>
<enum name="mode">
<description summary="window decoration modes">
These values describe window decoration modes.
</description>
<entry name="client_side" value="1"
summary="no server-side window decoration"/>
<entry name="server_side" value="2"
summary="server-side window decoration"/>
</enum>
<request name="set_mode">
<description summary="set the decoration mode">
Set the toplevel surface decoration mode. This informs the compositor
that the client prefers the provided decoration mode.
After requesting a decoration mode, the compositor will respond by
emitting a xdg_surface.configure event. The client should then update
its content, drawing it without decorations if the received mode is
server-side decorations. The client must also acknowledge the configure
when committing the new content (see xdg_surface.ack_configure).
The compositor can decide not to use the client's mode and enforce a
different mode instead.
Clients whose decoration mode depend on the xdg_toplevel state may send
a set_mode request in response to a xdg_surface.configure event and wait
for the next xdg_surface.configure event to prevent unwanted state.
Such clients are responsible for preventing configure loops and must
make sure not to send multiple successive set_mode requests with the
same decoration mode.
</description>
<arg name="mode" type="uint" enum="mode" summary="the decoration mode"/>
</request>
<request name="unset_mode">
<description summary="unset the decoration mode">
Unset the toplevel surface decoration mode. This informs the compositor
that the client doesn't prefer a particular decoration mode.
This request has the same semantics as set_mode.
</description>
</request>
<event name="configure">
<description summary="suggest a surface change">
The configure event asks the client to change its decoration mode. The
configured state should not be applied immediately. Clients must send an
ack_configure in response to this event. See xdg_surface.configure and
xdg_surface.ack_configure for details.
A configure event can be sent at any time. The specified mode must be
obeyed by the client.
</description>
<arg name="mode" type="uint" enum="mode" summary="the decoration mode"/>
</event>
</interface>
</protocol>

View File

@ -0,0 +1,220 @@
<?xml version="1.0" encoding="UTF-8"?>
<protocol name="xdg_output_unstable_v1">
<copyright>
Copyright © 2017 Red Hat Inc.
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice (including the next
paragraph) shall be included in all copies or substantial portions of the
Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
</copyright>
<description summary="Protocol to describe output regions">
This protocol aims at describing outputs in a way which is more in line
with the concept of an output on desktop oriented systems.
Some information are more specific to the concept of an output for
a desktop oriented system and may not make sense in other applications,
such as IVI systems for example.
Typically, the global compositor space on a desktop system is made of
a contiguous or overlapping set of rectangular regions.
Some of the information provided in this protocol might be identical
to their counterparts already available from wl_output, in which case
the information provided by this protocol should be preferred to their
equivalent in wl_output. The goal is to move the desktop specific
concepts (such as output location within the global compositor space,
the connector name and types, etc.) out of the core wl_output protocol.
Warning! The protocol described in this file is experimental and
backward incompatible changes may be made. Backward compatible
changes may be added together with the corresponding interface
version bump.
Backward incompatible changes are done by bumping the version
number in the protocol and interface names and resetting the
interface version. Once the protocol is to be declared stable,
the 'z' prefix and the version number in the protocol and
interface names are removed and the interface version number is
reset.
</description>
<interface name="zxdg_output_manager_v1" version="3">
<description summary="manage xdg_output objects">
A global factory interface for xdg_output objects.
</description>
<request name="destroy" type="destructor">
<description summary="destroy the xdg_output_manager object">
Using this request a client can tell the server that it is not
going to use the xdg_output_manager object anymore.
Any objects already created through this instance are not affected.
</description>
</request>
<request name="get_xdg_output">
<description summary="create an xdg output from a wl_output">
This creates a new xdg_output object for the given wl_output.
</description>
<arg name="id" type="new_id" interface="zxdg_output_v1"/>
<arg name="output" type="object" interface="wl_output"/>
</request>
</interface>
<interface name="zxdg_output_v1" version="3">
<description summary="compositor logical output region">
An xdg_output describes part of the compositor geometry.
This typically corresponds to a monitor that displays part of the
compositor space.
For objects version 3 onwards, after all xdg_output properties have been
sent (when the object is created and when properties are updated), a
wl_output.done event is sent. This allows changes to the output
properties to be seen as atomic, even if they happen via multiple events.
</description>
<request name="destroy" type="destructor">
<description summary="destroy the xdg_output object">
Using this request a client can tell the server that it is not
going to use the xdg_output object anymore.
</description>
</request>
<event name="logical_position">
<description summary="position of the output within the global compositor space">
The position event describes the location of the wl_output within
the global compositor space.
The logical_position event is sent after creating an xdg_output
(see xdg_output_manager.get_xdg_output) and whenever the location
of the output changes within the global compositor space.
</description>
<arg name="x" type="int"
summary="x position within the global compositor space"/>
<arg name="y" type="int"
summary="y position within the global compositor space"/>
</event>
<event name="logical_size">
<description summary="size of the output in the global compositor space">
The logical_size event describes the size of the output in the
global compositor space.
For example, a surface without any buffer scale, transformation
nor rotation set, with the size matching the logical_size will
have the same size as the corresponding output when displayed.
Most regular Wayland clients should not pay attention to the
logical size and would rather rely on xdg_shell interfaces.
Some clients such as Xwayland, however, need this to configure
their surfaces in the global compositor space as the compositor
may apply a different scale from what is advertised by the output
scaling property (to achieve fractional scaling, for example).
For example, for a wl_output mode 3840×2160 and a scale factor 2:
- A compositor not scaling the surface buffers will advertise a
logical size of 3840×2160,
- A compositor automatically scaling the surface buffers will
advertise a logical size of 1920×1080,
- A compositor using a fractional scale of 1.5 will advertise a
logical size of 2560×1440.
For example, for a wl_output mode 1920×1080 and a 90 degree rotation,
the compositor will advertise a logical size of 1080x1920.
The logical_size event is sent after creating an xdg_output
(see xdg_output_manager.get_xdg_output) and whenever the logical
size of the output changes, either as a result of a change in the
applied scale or because of a change in the corresponding output
mode(see wl_output.mode) or transform (see wl_output.transform).
</description>
<arg name="width" type="int"
summary="width in global compositor space"/>
<arg name="height" type="int"
summary="height in global compositor space"/>
</event>
<event name="done">
<description summary="all information about the output have been sent">
This event is sent after all other properties of an xdg_output
have been sent.
This allows changes to the xdg_output properties to be seen as
atomic, even if they happen via multiple events.
For objects version 3 onwards, this event is deprecated. Compositors
are not required to send it anymore and must send wl_output.done
instead.
</description>
</event>
<!-- Version 2 additions -->
<event name="name" since="2">
<description summary="name of this output">
Many compositors will assign names to their outputs, show them to the
user, allow them to be configured by name, etc. The client may wish to
know this name as well to offer the user similar behaviors.
The naming convention is compositor defined, but limited to
alphanumeric characters and dashes (-). Each name is unique among all
wl_output globals, but if a wl_output global is destroyed the same name
may be reused later. The names will also remain consistent across
sessions with the same hardware and software configuration.
Examples of names include 'HDMI-A-1', 'WL-1', 'X11-1', etc. However, do
not assume that the name is a reflection of an underlying DRM
connector, X11 connection, etc.
The name event is sent after creating an xdg_output (see
xdg_output_manager.get_xdg_output). This event is only sent once per
xdg_output, and the name does not change over the lifetime of the
wl_output global.
</description>
<arg name="name" type="string" summary="output name"/>
</event>
<event name="description" since="2">
<description summary="human-readable description of this output">
Many compositors can produce human-readable descriptions of their
outputs. The client may wish to know this description as well, to
communicate the user for various purposes.
The description is a UTF-8 string with no convention defined for its
contents. Examples might include 'Foocorp 11" Display' or 'Virtual X11
output via :1'.
The description event is sent after creating an xdg_output (see
xdg_output_manager.get_xdg_output) and whenever the description
changes. The description is optional, and may not be sent at all.
For objects of version 2 and lower, this event is only sent once per
xdg_output, and the description does not change over the lifetime of
the wl_output global.
</description>
<arg name="description" type="string" summary="output description"/>
</event>
</interface>
</protocol>

File diff suppressed because it is too large Load Diff