282 lines
6.7 KiB
Dart
282 lines
6.7 KiB
Dart
|
import 'dart:math';
|
||
|
|
||
|
abstract class Model {
|
||
|
static var dx = [-1, 0, 1, 0];
|
||
|
static var dy = [0, 1, 0, -1];
|
||
|
static var _opposite = [2, 3, 0, 1];
|
||
|
|
||
|
bool _initialized = false;
|
||
|
List<List<bool>> _wave = [];
|
||
|
List<List<List<int>>> propagator = [];
|
||
|
List<List<List<int>>> _compatible = [];
|
||
|
List<int> _observed = [];
|
||
|
|
||
|
List<(int, int)> _stack = [];
|
||
|
int _stacksize = 0, _observedSoFar = 0;
|
||
|
|
||
|
int cMx = 0, cMy = 0, cT = 0, cN = 0;
|
||
|
bool _periodic = false;
|
||
|
bool ground = false;
|
||
|
|
||
|
List<double> weights = [];
|
||
|
List<double> _weightLogWeights = [], _distribution = [];
|
||
|
|
||
|
List<int> _sumsOfOnes = [];
|
||
|
double _sumOfWeights = 0.0,
|
||
|
_sumOfWeightLogWeights = 0.0,
|
||
|
_startingEntropy = 0.0;
|
||
|
List<double> _sumsOfWeights = [],
|
||
|
_sumsOfWeightLogWeights = [],
|
||
|
_entropies = [];
|
||
|
|
||
|
Heuristic _heuristic = Heuristic.Entropy;
|
||
|
|
||
|
Model(int width, int height, int n, bool periodic, Heuristic heuristic) {
|
||
|
cMx = width;
|
||
|
cMy = height;
|
||
|
cN = n;
|
||
|
_periodic = periodic;
|
||
|
_heuristic = heuristic;
|
||
|
}
|
||
|
|
||
|
void _init() {
|
||
|
_initialized = true;
|
||
|
_wave = [
|
||
|
for (var r = 0; r < cMx * cMy; r++) [for (var t = 0; t < cT; t++) false]
|
||
|
];
|
||
|
_compatible = [
|
||
|
for (var r = 0; r < cMx * cMy; r++)
|
||
|
[
|
||
|
for (var t = 0; t < cT; t++) [0, 0, 0, 0]
|
||
|
]
|
||
|
];
|
||
|
_distribution = [for (var t = 0; t < cT; t++) 0.0];
|
||
|
_observed = [for (var r = 0; r < cMx * cMy; r++) 0];
|
||
|
|
||
|
_weightLogWeights = [
|
||
|
for (var t = 0; t < cT; t++) weights[t] * log(weights[t])
|
||
|
];
|
||
|
_sumOfWeights = 0;
|
||
|
_sumOfWeightLogWeights = 0.0;
|
||
|
for (var t = 0; t < cT; t++) {
|
||
|
_sumOfWeights += weights[t];
|
||
|
_sumOfWeightLogWeights += _weightLogWeights[t];
|
||
|
}
|
||
|
|
||
|
_startingEntropy =
|
||
|
log(_sumOfWeights) - _sumOfWeightLogWeights / _sumOfWeights;
|
||
|
|
||
|
_sumsOfOnes = [for (var r = 0; r < cMx * cMy; r++) 0];
|
||
|
_sumsOfWeights = [for (var r = 0; r < cMx * cMy; r++) 0.0];
|
||
|
_sumsOfWeightLogWeights = [for (var r = 0; r < cMx * cMy; r++) 0.0];
|
||
|
_entropies = [for (var r = 0; r < cMx * cMy; r++) 0.0];
|
||
|
|
||
|
_stack = [for (var r = 0; r < _wave.length * cT; r++) (0, 0)];
|
||
|
_stacksize = 0;
|
||
|
}
|
||
|
|
||
|
bool run(int? seed, int limit) {
|
||
|
if (!_initialized) {
|
||
|
_init();
|
||
|
}
|
||
|
clear();
|
||
|
|
||
|
var random = Random(seed);
|
||
|
|
||
|
for (var l = 0; l < limit || limit < 0; l++) {
|
||
|
var node = _nextUnobservedNode(random);
|
||
|
if (node >= 0) {
|
||
|
_observe(node, random);
|
||
|
var success = _propagate();
|
||
|
if (!success) {
|
||
|
return false;
|
||
|
}
|
||
|
} else {
|
||
|
for (var i = 0; i < _wave.length; i++) {
|
||
|
for (var t = 0; t < cT; t++) {
|
||
|
if (_wave[i][t]) {
|
||
|
_observed[i] = t;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
int _nextUnobservedNode(Random random) {
|
||
|
if (_heuristic == Heuristic.Entropy) {
|
||
|
for (var i = _observedSoFar; i < _wave.length; i++) {
|
||
|
if (!_periodic && (i % cMx + cN > cMx || i ~/ cMx + cN > cMy)) {
|
||
|
continue;
|
||
|
}
|
||
|
if (_sumsOfOnes[i] > 1) {
|
||
|
_observedSoFar = i + 1;
|
||
|
return i;
|
||
|
}
|
||
|
}
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
double min = 1E+4;
|
||
|
int argmin = -1;
|
||
|
for (var i = 0; i < _wave.length; i++) {
|
||
|
if (!_periodic && (i % cMx + cN > cMx || i ~/ cMx + cN > cMy)) {
|
||
|
continue;
|
||
|
}
|
||
|
var remainingValues = _sumsOfOnes[i];
|
||
|
double entropy = _heuristic == Heuristic.Entropy
|
||
|
? _entropies[i]
|
||
|
: remainingValues.toDouble();
|
||
|
if (remainingValues > 1 && entropy <= min) {
|
||
|
double noise = 1E-6 * random.nextDouble();
|
||
|
if (entropy + noise < min) {
|
||
|
min = entropy + noise;
|
||
|
argmin = i;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return argmin;
|
||
|
}
|
||
|
|
||
|
void _observe(int node, Random random) {
|
||
|
var w = _wave[node];
|
||
|
for (var t = 0; t < cT; t++) {
|
||
|
_distribution[t] = w[t] ? weights[t] : 0.0;
|
||
|
}
|
||
|
int r = _chooseRandom(random, _distribution);
|
||
|
for (var t = 0; t < cT; t++) {
|
||
|
if (w[t] != (t == r)) {
|
||
|
_ban(node, t);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool _propagate() {
|
||
|
while (_stacksize > 0) {
|
||
|
int i1, t1;
|
||
|
(i1, t1) = _stack[_stacksize - 1];
|
||
|
_stacksize--;
|
||
|
|
||
|
int x1 = i1 % cMx;
|
||
|
int y1 = i1 % cMy;
|
||
|
|
||
|
for (int d = 0; d < 4; d++) {
|
||
|
int x2 = x1 + dx[d];
|
||
|
int y2 = y1 + dy[d];
|
||
|
|
||
|
if (!_periodic &&
|
||
|
(x2 < 0 || y2 < 0 || x2 + cN > cMx || y2 + cN > cMy)) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (x2 < 0) {
|
||
|
x2 += cMx;
|
||
|
} else if (x2 >= 0) {
|
||
|
x2 -= cMx;
|
||
|
}
|
||
|
|
||
|
if (y2 < 0) {
|
||
|
y2 += cMy;
|
||
|
} else if (y2 >= cMy) {
|
||
|
y2 -= cMy;
|
||
|
}
|
||
|
|
||
|
int i2 = x2 + y2 * cMx;
|
||
|
var p = propagator[d][t1];
|
||
|
var compat = _compatible[i2];
|
||
|
|
||
|
for (var l = 0; l < p.length; l++) {
|
||
|
var t2 = p[l];
|
||
|
var comp = compat[t2];
|
||
|
comp[d]--;
|
||
|
if (comp[d] == 0) {
|
||
|
_ban(i2, t2);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return _sumsOfOnes[0] > 0;
|
||
|
}
|
||
|
|
||
|
void _ban(int i, int t) {
|
||
|
_wave[i][t] = false;
|
||
|
|
||
|
var comp = _compatible[i][t];
|
||
|
for (var d = 0; d < 4; d++) {
|
||
|
comp[d] = 0;
|
||
|
}
|
||
|
_stack[_stacksize] = (i, t);
|
||
|
_stacksize++;
|
||
|
|
||
|
_sumsOfOnes[i] -= 1;
|
||
|
_sumsOfWeights[i] -= weights[t];
|
||
|
_sumsOfWeightLogWeights[i] -= _weightLogWeights[t];
|
||
|
|
||
|
var sum = _sumsOfWeights[i];
|
||
|
_entropies[i] = log(sum) - _sumsOfWeightLogWeights[i] / sum;
|
||
|
}
|
||
|
|
||
|
void clear() {
|
||
|
for (var i = 0; i < _wave.length; i++) {
|
||
|
for (var t = 0; t < cT; t++) {
|
||
|
_wave[i][t] = true;
|
||
|
for (var d = 0; d < 4; d++) {
|
||
|
_compatible[i][t][d] = propagator[_opposite[d]][t].length;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
_sumsOfOnes[i] = weights.length;
|
||
|
_sumsOfWeights[i] = _sumOfWeights;
|
||
|
_sumsOfWeightLogWeights[i] = _sumOfWeightLogWeights;
|
||
|
_entropies[i] = _startingEntropy;
|
||
|
_observed[i] = -1;
|
||
|
}
|
||
|
_observedSoFar = 0;
|
||
|
|
||
|
if (ground) {
|
||
|
for (var x = 0; x < cMx; x++) {
|
||
|
for (var t = 0; t < cT - 1; t++) {
|
||
|
_ban(x + (cMy - 1) * cMx, t);
|
||
|
}
|
||
|
for (var y = 0; y < cMy - 1; y++) {
|
||
|
_ban(x + y * cMx, cT - 1);
|
||
|
}
|
||
|
}
|
||
|
_propagate();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int _chooseRandom(Random rand, List<double> distribution) {
|
||
|
if (distribution.isEmpty) {
|
||
|
throw Exception("can't sample empty distribution");
|
||
|
}
|
||
|
var sum = 0.0;
|
||
|
for (var i = 0; i < distribution.length; i++) {
|
||
|
sum += distribution[i];
|
||
|
}
|
||
|
|
||
|
if (sum == 0.0) {
|
||
|
return rand.nextInt(distribution.length);
|
||
|
}
|
||
|
|
||
|
var rnd = rand.nextDouble() * sum;
|
||
|
|
||
|
var i = 0;
|
||
|
while (rnd > 0) {
|
||
|
rnd -= distribution[i];
|
||
|
if (rnd < 0) {
|
||
|
return i;
|
||
|
}
|
||
|
i += 1;
|
||
|
}
|
||
|
return distribution.length - 1;
|
||
|
}
|
||
|
|
||
|
enum Heuristic { Entropy, MRV, Scanline }
|