Door placement
This commit is contained in:
33
lib/algorithms/kruskal.dart
Normal file
33
lib/algorithms/kruskal.dart
Normal file
@ -0,0 +1,33 @@
|
||||
import 'package:dartterm/algorithms/union_find.dart';
|
||||
|
||||
class Edge<T> {
|
||||
final int src, dst;
|
||||
final T value;
|
||||
final double score; // higher score is better
|
||||
|
||||
const Edge(this.src, this.dst, this.value, this.score);
|
||||
}
|
||||
|
||||
List<Edge<T>> kruskal<T>(int nRegions, List<Edge<T>> srcEdges) {
|
||||
var edges = List.from(srcEdges); // copy so we can mutate it
|
||||
edges.sort((e0, e1) => -e0.score.compareTo(e1.score));
|
||||
|
||||
List<Edge<T>> spanningEdges = [];
|
||||
var connected = UnionFind(nRegions);
|
||||
|
||||
for (var i = 0; i < edges.length; i++) {
|
||||
var edge = edges[i];
|
||||
if (connected.find(edge.src) == connected.find(edge.dst)) {
|
||||
continue;
|
||||
}
|
||||
spanningEdges.add(edge);
|
||||
connected.union(edge.src, edge.dst);
|
||||
|
||||
// break early if we run out of regions
|
||||
nRegions -= 1;
|
||||
if (nRegions == 1) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return spanningEdges;
|
||||
}
|
@ -26,7 +26,8 @@ class Region {
|
||||
}
|
||||
}
|
||||
|
||||
List<Region> regionalize(geo.Rect rect, bool Function(int, int) isAccessible) {
|
||||
(List<Region>, Map<(int, int), int>) regionalize(
|
||||
geo.Rect rect, bool Function(int, int) isAccessible) {
|
||||
int nextRegion = 0;
|
||||
Map<(int, int), int> regions = {};
|
||||
|
||||
@ -62,7 +63,7 @@ List<Region> regionalize(geo.Rect rect, bool Function(int, int) isAccessible) {
|
||||
}
|
||||
}
|
||||
}
|
||||
return _toExplicit(regions, nextRegion);
|
||||
return (_toExplicit(regions, nextRegion), regions);
|
||||
}
|
||||
|
||||
List<Region> _toExplicit(Map<(int, int), int> pointRegions, int nRegions) {
|
||||
|
78
lib/algorithms/union_find.dart
Normal file
78
lib/algorithms/union_find.dart
Normal file
@ -0,0 +1,78 @@
|
||||
// Copyright (c) 2012, scribeGriff (Richard Griffith)
|
||||
// https://github.com/scribeGriff/graphlab
|
||||
// All rights reserved. Please see the LICENSE.md file.
|
||||
//
|
||||
// Converted to modern Dart by Pyrex Panjakar.
|
||||
|
||||
/// A disjoint sets ADT implemented with a Union-Find data structure.
|
||||
///
|
||||
/// Performs union-by-rank and path compression. Elements are represented
|
||||
/// by ints, numbered from zero.
|
||||
///
|
||||
/// Each disjoint set has one element designated as its root.
|
||||
/// Negative values indicate the element is the root of a set. The absolute
|
||||
/// value of a negative value is the number of elements in the set.
|
||||
/// Positive values are an index to where the root was last known to be.
|
||||
/// If the set has been unioned with another, the last known root will point
|
||||
/// to a more recent root.
|
||||
///
|
||||
/// var a = new UnionFind(myGraph.length);
|
||||
///
|
||||
/// var u = a.find(myGraph[i][0]);
|
||||
/// var v = a.find(myGraph[i][1]);
|
||||
/// a.union(u, v);
|
||||
///
|
||||
/// Reference: Direct port of Mark Allen Weiss' UnionFind.java
|
||||
class UnionFind {
|
||||
late final List<int> array;
|
||||
|
||||
/// Construct a disjoint sets object.
|
||||
///
|
||||
/// numElements is the initial number of elements--also the initial
|
||||
/// number of disjoint sets, since every element is initially in its
|
||||
/// own set.
|
||||
UnionFind(int numElements) {
|
||||
// The array is zero based but the vertices are 1 based,
|
||||
// so we extend the array by 1 element to account for this.
|
||||
array = [for (var i = 0; i < numElements; i++) -1];
|
||||
}
|
||||
|
||||
/// union() unites two disjoint sets into a single set. A union-by-rank
|
||||
/// heuristic is used to choose the new root.
|
||||
///
|
||||
/// a is an element in the first set.
|
||||
/// b is an element in the first set.
|
||||
void union(int a, int b) {
|
||||
int rootA = find(a);
|
||||
int rootB = find(b);
|
||||
|
||||
if (rootA == rootB) return;
|
||||
|
||||
if (array[rootB] < array[rootA]) {
|
||||
// root_b has more elements, so leave it as the root.
|
||||
// first, indicate that the set represented by root_b has grown.
|
||||
array[rootB] += array[rootA];
|
||||
// Then, point the root of set a at set b.
|
||||
array[rootA] = rootB;
|
||||
} else {
|
||||
array[rootA] += array[rootB];
|
||||
array[rootB] = rootA;
|
||||
}
|
||||
}
|
||||
|
||||
/// find() finds the (int) name of the set containing a given element.
|
||||
/// Performs path compression along the way.
|
||||
///
|
||||
/// x is the element sought.
|
||||
/// returns the set containing x.
|
||||
int find(int x) {
|
||||
if (array[x] < 0) {
|
||||
return x; // x is the root of the tree; return it
|
||||
} else {
|
||||
// Find out who the root is; compress path by making the root
|
||||
// x's parent.
|
||||
array[x] = find(array[x]);
|
||||
return array[x]; // Return the root
|
||||
}
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user