dartterm/lib/algorithms/shadowcasting.dart
2023-09-22 21:08:03 -07:00

142 lines
3.3 KiB
Dart

// Port of https://www.albertford.com/shadowcasting/
import 'package:dartterm/algorithms/geometry.dart' as geo;
void shadowcast(geo.Offset origin, bool Function(geo.Offset) isBlocking,
Function(geo.Offset) markVisible) {
markVisible(origin);
for (var i = 0; i < 4; i++) {
var quadrant = Quadrant(i, origin.x, origin.y);
void reveal(geo.Offset tile) {
markVisible(quadrant.transform(tile));
}
bool isWall(geo.Offset? tile) {
if (tile == null) {
return false;
}
return isBlocking(quadrant.transform(tile));
}
bool isFloor(geo.Offset? tile) {
if (tile == null) {
return false;
}
return !isBlocking(quadrant.transform(tile));
}
void scan(Row row) {
geo.Offset? prevTile;
for (var tile in row.tiles()) {
if (isWall(tile) || isSymmetric(row, tile)) {
reveal(tile);
}
if (isWall(prevTile) && isFloor(tile)) {
row.startSlope = slope(tile);
}
if (isFloor(prevTile) && isWall(tile)) {
Row nextRow = row.next();
nextRow.endSlope = slope(tile);
scan(nextRow);
}
prevTile = tile;
}
if (isFloor(prevTile)) {
scan(row.next());
}
}
Row firstRow = Row(1, Fraction(-1, 1), Fraction(1, 1));
scan(firstRow);
}
}
class Quadrant {
static const int north = 0;
static const int east = 1;
static const int south = 2;
static const int west = 3;
final int cardinal;
final int ox, oy;
Quadrant(this.cardinal, this.ox, this.oy);
geo.Offset transform(geo.Offset tile) {
var geo.Offset(x: row, y: col) = tile;
switch (cardinal) {
case north:
return geo.Offset(ox + col, oy - row);
case south:
return geo.Offset(ox + col, oy + row);
case east:
return geo.Offset(ox + row, oy + col);
case west:
return geo.Offset(ox - row, oy + col);
default:
throw Exception("Quadrant must be initialized with a real cardinal");
}
}
}
class Row {
int depth;
Fraction startSlope;
Fraction endSlope;
Row(this.depth, this.startSlope, this.endSlope);
Iterable<geo.Offset> tiles() sync* {
var minCol = roundTiesUp(startSlope.scale(depth));
var maxCol = roundTiesDown(endSlope.scale(depth));
for (int col = minCol; col <= maxCol; col++) {
yield geo.Offset(depth, col);
}
}
Row next() {
return Row(depth + 1, startSlope, endSlope);
}
}
class Fraction {
final int numerator;
final int denominator;
Fraction(this.numerator, this.denominator);
Fraction scale(int n) {
return Fraction(numerator * n, denominator);
}
// We're often comparing this to an int or a double, so it's OK
// to have precision loss _so long as we do all divides after all multiplies_
double toDouble() {
return numerator.toDouble() / denominator.toDouble();
}
}
Fraction slope(geo.Offset tile) {
var geo.Offset(x: rowDepth, y: col) = tile;
return Fraction(2 * col - 1, 2 * rowDepth);
}
bool isSymmetric(Row row, geo.Offset tile) {
var geo.Offset(x: rowDepth, y: col) = tile;
return (col >= row.startSlope.scale(rowDepth).toDouble() &&
col <= (row.endSlope.scale(row.depth)).toDouble());
}
int roundTiesUp(Fraction n) {
return (n.toDouble() + 0.5).floor();
}
int roundTiesDown(Fraction n) {
return (n.toDouble() - 0.5).ceil();
}