Vault/BSP based level generator, part 1

This commit is contained in:
Pyrex 2023-09-19 21:02:04 -07:00
parent ed57ba18ed
commit dd92246402
6 changed files with 348 additions and 796 deletions

View File

@ -1,7 +1,6 @@
import 'dart:ui' as ui;
import 'package:dartterm/wfc/template.dart';
import 'package:dartterm/world/level.dart';
import 'package:dartterm/gen/generator.dart';
import 'package:flutter/services.dart';
class Assets {
@ -14,15 +13,14 @@ class Assets {
return image;
});
final _Table<WfcTemplate<LevelTile>> _wfcLevelTemplates =
_Table(loadLevelWfcAsync);
final _Table<Vaults> _vaults = _Table(Vaults.load);
ui.Image? getImageIfAvailable(String name) {
return _images.getIfAvailable(name);
}
WfcTemplate<LevelTile>? getWfcLevelTemplateIfAvailable(String name) {
return _wfcLevelTemplates.getIfAvailable(name);
Vaults? getVaultsIfAvailable(String name) {
return _vaults.getIfAvailable(name);
}
}
@ -53,6 +51,6 @@ ui.Image? getImageIfAvailable(String name) {
return assets.getImageIfAvailable(name);
}
WfcTemplate<LevelTile>? getWfcLevelTemplateIfAvailable(String name) {
return assets.getWfcLevelTemplateIfAvailable(name);
Vaults? getVaultsIfAvailable(String name) {
return assets.getVaultsIfAvailable(name);
}

View File

@ -1,41 +1,48 @@
import 'dart:developer';
import 'dart:math' as math;
import 'package:dartterm/assets.dart';
import 'package:dartterm/colors.dart';
import 'package:dartterm/gen/generator.dart';
import 'package:dartterm/terminal.dart';
import 'package:dartterm/wfc/template.dart';
import 'package:dartterm/world/level.dart';
void main() async {
WfcTemplate<LevelTile> template;
Vaults vaults;
while (true) {
log("about to load template");
at(0, 0).clear();
at(0, 0).puts("Loading template!");
WfcTemplate<LevelTile>? maybeTemplate =
getWfcLevelTemplateIfAvailable("assets/images/wfc/bighouse2.png");
Vaults? maybeVaults =
getVaultsIfAvailable("assets/images/wfc/bighouse2.png");
if (maybeTemplate != null) {
if (maybeVaults != null) {
log("wasn't null!");
template = maybeTemplate;
vaults = maybeVaults;
break;
}
await zzz(0.1);
}
at(0, 0).clear();
at(0, 0).puts("Loaded! $template");
at(0, 0).puts("Loaded! $vaults");
var W = 16;
var H = 16;
var wfc = Wfc(template, W, H);
wfc.run(1, -1);
var output = wfc.extractPartial();
for (var y = 0; y < W; y++) {
for (var x = 0; x < H; x++) {
Vault output = vaults.generateBoxed(
math.Random(2),
Requirement(
16,
16,
DirectionSet({
Direction.up,
Direction.left,
Direction.right,
Direction.down
})));
var w = output.vx;
var h = output.vy;
for (var y = 0; y < w; y++) {
for (var x = 0; x < h; x++) {
var cursor = at(x * 2, y * 2).big();
switch (output[x + y * W]) {
switch (output.tiles[x + y * w]) {
case LevelTile.floor:
cursor.puts(" ");
case LevelTile.door:
@ -44,8 +51,6 @@ void main() async {
cursor.puts("#");
case LevelTile.exit:
cursor.puts("X");
case null:
cursor.puts("?");
}
}
}

301
lib/gen/generator.dart Normal file
View File

@ -0,0 +1,301 @@
import 'dart:developer';
import 'dart:math' as math;
import 'package:dartterm/world/level.dart';
enum Direction {
up,
left,
down,
right,
}
class Vaults {
List<Vault> _primitive = [];
static Future<Vaults> load(String filename) async {
// TODO
return Vaults();
}
Vault generateBoxed(math.Random random, Requirement req) {
var vx = req.vx;
var vy = req.vy;
var tiles = [
for (var y = 0; y < vy; y++)
for (var x = 0; x < vx; x++) LevelTile.wall
];
var v = Vault(tiles, vx, vy, req.smooth);
if (req.vx < 2 || req.vy < 2) {
return v;
}
var req2 = Requirement(vx - 2, vy - 2, req.smooth);
var inner = generate(random, req2);
v.blitFrom(inner, 1, 1);
return v;
}
Vault generate(math.Random random, Requirement requirement) {
// TODO: Pick a relevant vault from the vaults file if possible
//
// First of all: randomize orientation.
// This way we only have to consider one kind of spilt
var orientation = randomOrientation(random);
// Try to make vx the long axis if possible
var req2 = requirement.unReorient(orientation);
if (req2.vy > (req2.vx - 2) * 3 / 2) {
orientation = (orientation + 2) % 8; // rotate once more
}
req2 = requirement.unReorient(orientation);
var out2 = _generate(random, req2);
var out1 = out2.reorient(orientation);
log("$orientation ${requirement.vx} ${requirement.vy} ${req2.vx} ${req2.vy} ${out2.vx} ${out2.vy} ${out1.vx} ${out1.vy}");
assert(out1.vx == requirement.vx);
assert(out1.vy == requirement.vy);
return out1;
}
Vault _generate(math.Random random, Requirement req) {
var vx = req.vx;
var vy = req.vy;
var tiles = [
for (var y = 0; y < vy; y++)
for (var x = 0; x < vx; x++) LevelTile.wall
];
var v = Vault(tiles, vx, vy, req.smooth);
if (vx < 3 || vx * vy < 10) {
v.clear(LevelTile.floor);
} else {
// pick a split point
var splitVx = random.nextInt(vx - 2) + 1;
var reqLeft = Requirement(splitVx, vy, req.smooth.clone());
reqLeft.smooth.directions.add(Direction.right);
var reqRight = Requirement((vx - splitVx - 1), vy, req.smooth.clone());
reqRight.smooth.directions.add(Direction.left);
var vaultLeft = generate(random, reqLeft);
var vaultRight = generate(random, reqRight);
v.blitFrom(vaultLeft, 0, 0);
v.blitFrom(vaultRight, splitVx + 1, 0);
}
return v;
}
}
// TODO: There are many more efficient ways to do this
class DirectionSet {
final Set<Direction> directions;
DirectionSet(this.directions);
DirectionSet flip() {
var ds2 = DirectionSet({});
for (var i in directions) {
switch (i) {
case Direction.up:
ds2.directions.add(Direction.up);
case Direction.left:
ds2.directions.add(Direction.right);
case Direction.down:
ds2.directions.add(Direction.down);
case Direction.right:
ds2.directions.add(Direction.left);
}
}
return ds2;
}
DirectionSet rotateLeft() {
var ds2 = DirectionSet({});
for (var i in directions) {
switch (i) {
case Direction.up:
ds2.directions.add(Direction.left);
case Direction.left:
ds2.directions.add(Direction.down);
case Direction.down:
ds2.directions.add(Direction.right);
case Direction.right:
ds2.directions.add(Direction.up);
}
}
return ds2;
}
DirectionSet rotateRight() {
var ds2 = DirectionSet({});
for (var i in directions) {
switch (i) {
case Direction.up:
ds2.directions.add(Direction.right);
case Direction.right:
ds2.directions.add(Direction.down);
case Direction.down:
ds2.directions.add(Direction.left);
case Direction.left:
ds2.directions.add(Direction.up);
}
}
return ds2;
}
DirectionSet clone() {
var ds2 = DirectionSet({});
ds2.directions.addAll(directions);
return ds2;
}
}
class Requirement {
final int vx, vy;
final DirectionSet smooth;
Requirement(this.vx, this.vy, this.smooth);
Requirement flip() {
return Requirement(vx, vy, smooth.flip());
}
Requirement rotateLeft() {
return Requirement(vy, vx, smooth.rotateLeft());
}
Requirement rotateRight() {
return Requirement(vy, vx, smooth.rotateRight());
}
Requirement unReorient(int r) {
assert(r >= 0 && r < 8);
Requirement o = this;
if (r % 2 == 1) {
o = o.flip();
r -= 1;
}
while (r >= 2) {
o = o.rotateLeft();
r -= 2;
}
return o;
}
}
class Vault {
final List<LevelTile> tiles;
final int vx, vy;
final DirectionSet smooth;
Vault(this.tiles, this.vx, this.vy, this.smooth) {
assert(tiles.length == vx * vy);
}
static Vault fromVaultData(List<LevelTile> tiles, int vx, int vy) {
assert(tiles.length == vx * vy);
var smooth = {
Direction.up,
Direction.left,
Direction.down,
Direction.right
};
for (var x = 0; x < vx; x++) {
if (tiles[x + 0 * vx] == LevelTile.wall) {
smooth.remove(Direction.up);
break;
}
}
for (var x = 0; x < vx; x++) {
if (tiles[x + (vy - 1) * vx] == LevelTile.wall) {
smooth.remove(Direction.down);
break;
}
}
for (var y = 0; y < vy; y++) {
if (tiles[0 + y * vx] == LevelTile.wall) {
smooth.remove(Direction.left);
break;
}
}
for (var y = 0; y < vy; y++) {
if (tiles[vx - 1 + y * vx] == LevelTile.wall) {
smooth.remove(Direction.right);
break;
}
}
return Vault(tiles, vx, vy, DirectionSet(smooth));
}
void clear(LevelTile lt) {
for (var y = 0; y < vy; y++) {
for (var x = 0; x < vx; x++) {
tiles[y * vx + x] = lt;
}
}
}
void blitFrom(Vault other, int dx, int dy) {
assert(dx >= 0);
assert(dy >= 0);
assert(dx + other.vx <= vx);
assert(dy + other.vy <= vy);
for (var x = 0; x < other.vx; x++) {
for (var y = 0; y < other.vy; y++) {
tiles[(y + dy) * vx + x + dx] = other.tiles[y * other.vx + x];
}
}
}
Vault flip() {
List<LevelTile> tiles2 = [
for (var y = 0; y < vy; y++)
for (var x = vx - 1; x >= 0; x--) tiles[y * vx + x]
];
return Vault(tiles2, vx, vy, smooth.flip());
}
Vault rotateRight() {
List<LevelTile> tiles2 = [
for (var x = 0; x < vx; x++)
for (var y = 0; y < vy; y++) tiles[y * vx + x]
];
return Vault(tiles2, vy, vx, smooth.rotateRight());
}
Vault rotateLeft() {
List<LevelTile> tiles2 = [
for (var x = vx - 1; x >= 0; x++)
for (var y = vy - 1; y >= 0; y++) tiles[y * vx + x]
];
return Vault(tiles2, vy, vx, smooth.rotateLeft());
}
Vault reorient(int r) {
assert(r >= 0 && r < 8);
Vault o = this;
while (r >= 2) {
o = o.rotateRight();
r -= 2;
}
if (r == 1) {
o = o.flip();
r -= 1;
}
return o;
}
}
int randomOrientation(math.Random random) {
return random.nextInt(8);
}

View File

@ -1,281 +0,0 @@
import 'dart:math';
abstract class Model {
static var dx = [-1, 0, 1, 0];
static var dy = [0, 1, 0, -1];
static var opposite = [2, 3, 0, 1];
bool _initialized = false;
List<List<bool>> _wave = [];
List<List<List<int>>> propagator = [];
List<List<List<int>>> _compatible = [];
List<int?> _observed = [];
List<(int, int)> _stack = [];
int _stacksize = 0, _observedSoFar = 0;
int cMx = 0, cMy = 0, cT = 0, cN = 0;
bool _periodic = false;
bool ground = false;
List<double> weights = [];
List<double> _weightLogWeights = [], _distribution = [];
List<int> _sumsOfOnes = [];
double _sumOfWeights = 0.0,
_sumOfWeightLogWeights = 0.0,
_startingEntropy = 0.0;
List<double> _sumsOfWeights = [],
_sumsOfWeightLogWeights = [],
_entropies = [];
Heuristic _heuristic = Heuristic.Entropy;
Model(int width, int height, int n, bool periodic, Heuristic heuristic) {
cMx = width;
cMy = height;
cN = n;
_periodic = periodic;
_heuristic = heuristic;
}
void _init() {
_initialized = true;
_wave = [
for (var r = 0; r < cMx * cMy; r++) [for (var t = 0; t < cT; t++) false]
];
_compatible = [
for (var r = 0; r < cMx * cMy; r++)
[
for (var t = 0; t < cT; t++) [0, 0, 0, 0]
]
];
_distribution = [for (var t = 0; t < cT; t++) 0.0];
_observed = [for (var r = 0; r < cMx * cMy; r++) null];
_weightLogWeights = [
for (var t = 0; t < cT; t++) weights[t] * log(weights[t])
];
_sumOfWeights = 0;
_sumOfWeightLogWeights = 0.0;
for (var t = 0; t < cT; t++) {
_sumOfWeights += weights[t];
_sumOfWeightLogWeights += _weightLogWeights[t];
}
_startingEntropy =
log(_sumOfWeights) - _sumOfWeightLogWeights / _sumOfWeights;
_sumsOfOnes = [for (var r = 0; r < cMx * cMy; r++) 0];
_sumsOfWeights = [for (var r = 0; r < cMx * cMy; r++) 0.0];
_sumsOfWeightLogWeights = [for (var r = 0; r < cMx * cMy; r++) 0.0];
_entropies = [for (var r = 0; r < cMx * cMy; r++) 0.0];
_stack = [for (var r = 0; r < _wave.length * cT; r++) (0, 0)];
_stacksize = 0;
}
bool run(int? seed, int limit) {
if (!_initialized) {
_init();
}
clear();
var random = Random(seed);
for (var l = 0; l < limit || limit < 0; l++) {
var node = _nextUnobservedNode(random);
if (node >= 0) {
_observe(node, random);
var success = _propagate();
if (!success) {
return false;
}
} else {
for (var i = 0; i < _wave.length; i++) {
for (var t = 0; t < cT; t++) {
if (_wave[i][t]) {
_observed[i] = t;
break;
}
}
}
return true;
}
}
return true;
}
int _nextUnobservedNode(Random random) {
if (_heuristic == Heuristic.Scanline) {
for (var i = _observedSoFar; i < _wave.length; i++) {
if (!_periodic && (i % cMx + cN > cMx || i ~/ cMx + cN > cMy)) {
continue;
}
if (_sumsOfOnes[i] > 1) {
_observedSoFar = i + 1;
return i;
}
}
return -1;
}
double min = 1E+4;
int argmin = -1;
for (var i = 0; i < _wave.length; i++) {
if (!_periodic && (i % cMx + cN > cMx || i ~/ cMx + cN > cMy)) {
continue;
}
var remainingValues = _sumsOfOnes[i];
double entropy = _heuristic == Heuristic.Entropy
? _entropies[i]
: remainingValues.toDouble();
if (remainingValues > 1 && entropy <= min) {
double noise = 1E-6 * random.nextDouble();
if (entropy + noise < min) {
min = entropy + noise;
argmin = i;
}
}
}
return argmin;
}
void _observe(int node, Random random) {
var w = _wave[node];
for (var t = 0; t < cT; t++) {
_distribution[t] = w[t] ? weights[t] : 0.0;
}
int r = _chooseRandom(random, _distribution);
for (var t = 0; t < cT; t++) {
if (w[t] != (t == r)) {
_ban(node, t);
}
}
}
bool _propagate() {
while (_stacksize > 0) {
int i1, t1;
(i1, t1) = _stack[_stacksize - 1];
_stacksize--;
int x1 = i1 % cMx;
int y1 = i1 % cMy;
for (int d = 0; d < 4; d++) {
int x2 = x1 + dx[d];
int y2 = y1 + dy[d];
if (!_periodic &&
(x2 < 0 || y2 < 0 || x2 + cN > cMx || y2 + cN > cMy)) {
continue;
}
if (x2 < 0) {
x2 += cMx;
} else if (x2 >= cMx) {
x2 -= cMx;
}
if (y2 < 0) {
y2 += cMy;
} else if (y2 >= cMy) {
y2 -= cMy;
}
int i2 = x2 + y2 * cMx;
var p = propagator[d][t1];
var compat = _compatible[i2];
for (var l = 0; l < p.length; l++) {
var t2 = p[l];
var comp = compat[t2];
comp[d]--;
if (comp[d] == 0) {
_ban(i2, t2);
}
}
}
}
return _sumsOfOnes[0] > 0;
}
void _ban(int i, int t) {
_wave[i][t] = false;
var comp = _compatible[i][t];
for (var d = 0; d < 4; d++) {
comp[d] = 0;
}
_stack[_stacksize] = (i, t);
_stacksize++;
_sumsOfOnes[i] -= 1;
_sumsOfWeights[i] -= weights[t];
_sumsOfWeightLogWeights[i] -= _weightLogWeights[t];
var sum = _sumsOfWeights[i];
_entropies[i] = log(sum) - _sumsOfWeightLogWeights[i] / sum;
}
void clear() {
for (var i = 0; i < _wave.length; i++) {
for (var t = 0; t < cT; t++) {
_wave[i][t] = true;
for (var d = 0; d < 4; d++) {
_compatible[i][t][d] = propagator[opposite[d]][t].length;
}
}
_sumsOfOnes[i] = weights.length;
_sumsOfWeights[i] = _sumOfWeights;
_sumsOfWeightLogWeights[i] = _sumOfWeightLogWeights;
_entropies[i] = _startingEntropy;
_observed[i] = -1;
}
_observedSoFar = 0;
if (ground) {
for (var x = 0; x < cMx; x++) {
for (var t = 0; t < cT - 1; t++) {
_ban(x + (cMy - 1) * cMx, t);
}
for (var y = 0; y < cMy - 1; y++) {
_ban(x + y * cMx, cT - 1);
}
}
_propagate();
}
}
}
int _chooseRandom(Random rand, List<double> distribution) {
if (distribution.isEmpty) {
throw Exception("can't sample empty distribution");
}
var sum = 0.0;
for (var i = 0; i < distribution.length; i++) {
sum += distribution[i];
}
if (sum == 0.0) {
return rand.nextInt(distribution.length);
}
var rnd = rand.nextDouble() * sum;
var i = 0;
while (rnd > 0) {
rnd -= distribution[i];
if (rnd < 0) {
return i;
}
i += 1;
}
return distribution.length - 1;
}
enum Heuristic { Entropy, MRV, Scanline }

View File

@ -1,467 +0,0 @@
import 'dart:developer';
import 'dart:math' as math;
import 'dart:typed_data';
import 'dart:ui' as ui;
import 'dart:ui';
import 'package:flutter/services.dart';
class Wfc<T> {
// parameters
final WfcTemplate<T> _template;
final int _mx, _my;
// constants
int get _n => _mx * _my;
int get _nShingles => _template._shingles.n;
int get _order => _template._order;
double _weight(int shingleIx) =>
_template._shingles._shingleWeights[shingleIx];
// overall algo state
List<List<bool>> _wave = [];
List<List<List<int>>> _compatible = [];
List<int?> _observed = [];
// computationally expensive stuff that we keep in an incremental way
List<int> _sumsOfOnes = [];
// temporaries
List<double> _distribution = [];
List<(int, int)> _stack = [];
int _stacksize = 0;
Wfc(this._template, this._mx, this._my) {
_wave = [
for (var r = 0; r < _n; r++) [for (var t = 0; t < _nShingles; t++) false]
];
_compatible = [
for (var r = 0; r < _n; r++)
[
for (var t = 0; t < _nShingles; t++) [0, 0, 0, 0]
]
];
_distribution = [for (var t = 0; t < _nShingles; t++) 0.0];
_observed = [for (var r = 0; r < _n; r++) null];
_sumsOfOnes = [for (var r = 0; r < _n; r++) 0];
_stack = [for (var r = 0; r < _n * _nShingles; r++) (0, 0)];
_stacksize = 0;
}
void clear() {
for (var i = 0; i < _wave.length; i++) {
for (var t = 0; t < _nShingles; t++) {
_wave[i][t] = true;
for (var d = 0; d < 4; d++) {
_compatible[i][t][d] = _template
._shingles._metadata._propagators[_opposite[d]][t].length;
}
}
_sumsOfOnes[i] = _nShingles;
_observed[i] = null;
}
}
bool run(int? seed, int limit) {
clear();
var random = math.Random(seed);
for (var l = 0; l < limit || limit < 0; l++) {
var node = _nextUnobservedNode(random);
if (node != null) {
_observe(node, random);
var success = _propagate();
if (!success) {
return false;
}
} else {
for (var i = 0; i < _n; i++) {
for (var t = 0; t < _nShingles; t++) {
if (_wave[i][t]) {
_observed[i] = t;
break;
}
}
}
return true;
}
}
return true;
}
List<T>? extract() {
var partial = extractPartial();
List<T> out = [];
for (var i in partial) {
if (i == null) {
return null;
}
out.add(i);
}
return out;
}
List<T?> extractPartial() {
List<T?> result = [];
for (int i = 0; i < _n; i++) {
result.add(null);
}
for (int y = 0; y < _my; y++) {
var dy = y < _my - _order + 1 ? 0 : _order - 1;
for (int x = 0; x < _mx; x++) {
var dx = x < _mx - _order + 1 ? 0 : _order - 1;
var shingleIx = _observed[x - dx + (y - dy) * _mx];
if (shingleIx != null) {
var shingle = _template._shingles._shingleValues[shingleIx];
var content = shingle.content[dx + dy * _order];
var real = _template._embedding.decode(content);
result[x + y * _mx] = real;
}
}
}
return result;
}
int? _nextUnobservedNode(math.Random random) {
double min = 1E+10;
int? argmin;
for (var i = 0; i < _n; i++) {
if (i % _mx + _order > _mx || i ~/ _mx + _order > _my) {
continue;
}
var remainingValues = _sumsOfOnes[i];
double entropy = remainingValues.toDouble();
if (remainingValues > 1 && entropy <= min) {
double noise = 1E-6 * random.nextDouble();
if (entropy + noise < min) {
min = entropy + noise;
argmin = i;
}
}
}
return argmin;
}
void _observe(int node, math.Random random) {
var w = _wave[node];
for (var t = 0; t < _nShingles; t++) {
_distribution[t] = w[t] ? _weight(t) : 0.0;
}
int r = _chooseRandom(random, _distribution);
for (var t = 0; t < _nShingles; t++) {
if (w[t] != (t == r)) {
_ban(node, t);
}
}
}
bool _propagate() {
while (_stacksize > 0) {
int i1, t1;
(i1, t1) = _stack[_stacksize - 1];
_stacksize--;
int x1 = i1 % _mx;
int y1 = i1 ~/ _mx;
for (int d = 0; d < 4; d++) {
var x2 = x1 + _dx[d];
var y2 = y1 + _dy[d];
if (x2 < 0 || y2 < 0 || x2 + _order > _mx || y2 + _order > _my) {
continue;
}
int i2 = x2 + y2 * _mx;
var p = _template._shingles._metadata._propagators[d][t1];
var compat = _compatible[i2];
for (var t2 in p) {
var comp = compat[t2];
comp[d]--;
if (comp[d] == 0) {
_ban(i2, t2);
}
}
}
}
return _sumsOfOnes[0] > 0;
}
void _ban(int i, int t) {
_wave[i][t] = false;
var comp = _compatible[i][t];
for (var d = 0; d < 4; d++) {
comp[d] = 0;
}
_stack[_stacksize] = (i, t);
_stacksize++;
_sumsOfOnes[i] -= 1;
}
}
class WfcTemplate<T> {
final Shingles _shingles;
final Embedding<T> _embedding;
final int _order;
WfcTemplate(this._shingles, this._embedding, this._order);
static Future<WfcTemplate<T>> loadAsync<T>(
String name, int order, T Function(int) cb) async {
final assetImageByteData = await rootBundle.load(name);
final codec =
await ui.instantiateImageCodec(assetImageByteData.buffer.asUint8List());
final image = (await codec.getNextFrame()).image;
final bytedata =
(await image.toByteData(format: ImageByteFormat.rawStraightRgba))!;
final sx = image.width;
final sy = image.height;
final List<T> bitmap = [];
for (var i = 0; i < sx * sy; i++) {
var pixel = bytedata.getUint32(i * 4, Endian.little);
bitmap.add(cb(pixel));
}
return loadBitmap(bitmap, sx, sy, order);
}
static WfcTemplate<T> loadBitmap<T>(
List<T> bitmap, int sx, int sy, int order) {
if (bitmap.length != sx * sy) {
throw Exception("malformed bitmap");
}
var embedding = Embedding<T>();
List<int> sample = [
for (var i = 0; i < bitmap.length; i++) embedding.encode(bitmap[i])
];
embedding.freeze();
var shingles = Shingles();
var xmax = sx - order + 1;
var ymax = sy - order + 1;
for (var y = 0; y < ymax; y++) {
for (var x = 0; x < xmax; x++) {
var ps = [
Shingle(order, embedding.c,
(dx, dy) => sample[(x + dx) % sx + (y + dy) % sy * sx])
];
ps.add(ps[0].reflect());
ps.add(ps[0].rotate());
ps.add(ps[2].reflect());
ps.add(ps[2].rotate());
ps.add(ps[4].reflect());
ps.add(ps[4].rotate());
ps.add(ps[6].reflect());
for (var p in ps) {
shingles.observe(p, 1.0);
}
}
}
shingles.freeze();
return WfcTemplate(shingles, embedding, order);
}
}
class Shingles {
bool _frozen = false;
final Map<int, int> _shingleIndices = {};
final List<Shingle> _shingleValues = [];
final List<double> _shingleWeights = [];
late ShingleMetadata _metadata;
int get n {
if (!_frozen) {
throw StateError("can't use Shingles#get n until frozen");
}
return _shingleValues.length;
}
void freeze() {
if (_frozen) {
throw StateError("can't freeze when already frozen");
}
_frozen = true;
_metadata = ShingleMetadata(this);
}
void observe(Shingle s, double n) {
if (_frozen) {
throw StateError("can't observe when already frozen");
}
// double n: weights can be fractional
var index = _shingleIndices[s.hashCode];
if (index == null) {
index = _shingleValues.length;
_shingleValues.add(s);
_shingleWeights.add(n);
} else {
_shingleWeights[index] += n;
}
}
}
class ShingleMetadata {
// [direction][source] => list of agreeing items
List<List<List<int>>> _propagators = [];
ShingleMetadata(Shingles s) {
_propagators = [
for (var d = 0; d < 4; d++)
[
for (var t = 0; t < s.n; t++)
[
for (var t2 = 0; t2 < s.n; t2++)
if (s._shingleValues[t]
.agrees(s._shingleValues[t2], _dx[d], _dy[d]))
t2
]
]
];
}
}
class Shingle {
int order;
int c;
List<int> content = [];
@override
int hashCode = 0;
Shingle(this.order, this.c, int Function(int, int) f) {
content = [
for (var y = 0; y < order; y++)
for (var x = 0; x < order; x++) f(x, y)
];
int result = 0, power = 1;
for (var i = 0; i < content.length; i++) {
result += content[content.length - 1 - i] * power;
power *= c;
}
hashCode = result;
}
Shingle rotate() {
return Shingle(order, c, (x, y) => content[order - 1 - y + x * order]);
}
Shingle reflect() {
return Shingle(order, c, (x, y) => content[order - 1 - x + y * order]);
}
bool agrees(Shingle other, int dx, int dy) {
var p1 = content;
var p2 = other.content;
var n = order;
int xmin = dx < 0 ? 0 : dx;
int xmax = dx < 0 ? dx + n : n;
int ymin = dy < 0 ? 0 : dy;
int ymax = dy < 0 ? dy + n : n;
for (var y = ymin; y < ymax; y++) {
for (var x = xmin; x < xmax; x++) {
if (p1[x + n * y] != p2[x - dx + n * (y - dy)]) {
return false;
}
}
}
return true;
}
@override
bool operator ==(Object other) {
return (other is Shingle) &&
other.hashCode == hashCode &&
other.order == order &&
other.c == c;
}
}
class Embedding<T> {
bool _frozen = false;
final List<T> _colorOf = [];
final Map<T, int> _codeOf = {};
void freeze() {
if (_frozen) {
throw StateError("can't freeze when already frozen");
}
_frozen = true;
}
int get c {
if (!_frozen) {
throw StateError("can't use Embedding#get c until frozen");
}
return _colorOf.length;
}
int encode(T t) {
var code = _codeOf[t];
if (code == null) {
if (_frozen) {
throw StateError("can't create new code when frozen");
}
code = _colorOf.length;
_codeOf[t] = code;
_colorOf.add(t);
}
return code;
}
T decode(int i) {
return _colorOf[i]!;
}
}
int _chooseRandom(math.Random rand, List<double> distribution) {
if (distribution.isEmpty) {
throw Exception("can't sample empty distribution");
}
var sum = 0.0;
for (var i = 0; i < distribution.length; i++) {
sum += distribution[i];
}
if (sum == 0.0) {
return rand.nextInt(distribution.length);
}
var rnd = rand.nextDouble() * sum;
var i = 0;
while (rnd > 0) {
rnd -= distribution[i];
if (rnd < 0) {
return i;
}
i += 1;
}
return distribution.length - 1;
}
final List<int> _dx = [-1, 0, 1, 0];
final List<int> _dy = [0, 1, 0, -1];
final List<int> _opposite = [2, 3, 0, 1];

View File

@ -1,5 +1,3 @@
import 'package:dartterm/wfc/template.dart';
enum LevelTile {
exit,
door,
@ -11,23 +9,21 @@ class Level {
Set<(int, int)> openCells = {};
}
Future<WfcTemplate<LevelTile>> loadLevelWfcAsync(String name) async {
return WfcTemplate.loadAsync(name, 3, (c) {
switch (c) {
// ABGR
case 0xFF000000:
case 0xFF707070:
return LevelTile.wall;
case 0xFFFFFFFF:
case 0xFF00FFFF:
case 0xFFFF00FF:
return LevelTile.floor;
case 0xFFFF8700:
return LevelTile.door;
case 0xFF0000FF:
return LevelTile.exit;
default:
throw Exception("unrecognized pixel: $c");
}
});
LevelTile colorToTile(int c) {
switch (c) {
// ABGR
case 0xFF000000:
case 0xFF707070:
return LevelTile.wall;
case 0xFFFFFFFF:
case 0xFF00FFFF:
case 0xFFFF00FF:
return LevelTile.floor;
case 0xFFFF8700:
return LevelTile.door;
case 0xFF0000FF:
return LevelTile.exit;
default:
throw Exception("unrecognized pixel: $c");
}
}